质数上的正切不等式

Pub Date : 2023-11-28 DOI:10.1007/s11253-023-02245-z
S. I. Dimitrov
{"title":"质数上的正切不等式","authors":"S. I. Dimitrov","doi":"10.1007/s11253-023-02245-z","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new Diophantine inequality with prime numbers. Let <span>\\(1&lt;c&lt;\\frac{10}{9}.\\)</span> We show that, for any fixed <i>θ &gt;</i> 1<i>,</i> every sufficiently large positive number <i>N,</i> and a small constant <i>ε &gt;</i> 0<i>,</i> the tangent inequality\n</p><span>$$\\left|{p}_{1}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{1}\\right)+{p}_{2}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{2}\\right)+{p}_{3}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{3}\\right)-N\\right|&lt;\\varepsilon $$</span><p>has a solution in prime numbers <i>p</i><sub>1</sub><i>, p</i><sub>2</sub><i>,</i> and <i>p</i><sub>3</sub><i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tangent Inequality Over Primes\",\"authors\":\"S. I. Dimitrov\",\"doi\":\"10.1007/s11253-023-02245-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new Diophantine inequality with prime numbers. Let <span>\\\\(1&lt;c&lt;\\\\frac{10}{9}.\\\\)</span> We show that, for any fixed <i>θ &gt;</i> 1<i>,</i> every sufficiently large positive number <i>N,</i> and a small constant <i>ε &gt;</i> 0<i>,</i> the tangent inequality\\n</p><span>$$\\\\left|{p}_{1}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{1}\\\\right)+{p}_{2}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{2}\\\\right)+{p}_{3}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{3}\\\\right)-N\\\\right|&lt;\\\\varepsilon $$</span><p>has a solution in prime numbers <i>p</i><sub>1</sub><i>, p</i><sub>2</sub><i>,</i> and <i>p</i><sub>3</sub><i>.</i></p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02245-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02245-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个新的素数丢芬图不等式。让 \(1<c<\frac{10}{9}.\) 我们证明,对于任意固定的θ &gt;1、每一个足够大的正数N,以及一个小常数ε &gt;0, tan不等式$$\left|{p}_{1}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{1}\right)+{p}_{2}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{2}\right)+{p}_{3}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{3}\right)-N\right|<\varepsilon $$有质数p1 p2 p3的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Tangent Inequality Over Primes

We introduce a new Diophantine inequality with prime numbers. Let \(1<c<\frac{10}{9}.\) We show that, for any fixed θ > 1, every sufficiently large positive number N, and a small constant ε > 0, the tangent inequality

$$\left|{p}_{1}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{1}\right)+{p}_{2}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{2}\right)+{p}_{3}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{3}\right)-N\right|<\varepsilon $$

has a solution in prime numbers p1, p2, and p3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信