质数上的正切不等式

IF 0.5 4区 数学 Q3 MATHEMATICS
S. I. Dimitrov
{"title":"质数上的正切不等式","authors":"S. I. Dimitrov","doi":"10.1007/s11253-023-02245-z","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new Diophantine inequality with prime numbers. Let <span>\\(1&lt;c&lt;\\frac{10}{9}.\\)</span> We show that, for any fixed <i>θ &gt;</i> 1<i>,</i> every sufficiently large positive number <i>N,</i> and a small constant <i>ε &gt;</i> 0<i>,</i> the tangent inequality\n</p><span>$$\\left|{p}_{1}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{1}\\right)+{p}_{2}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{2}\\right)+{p}_{3}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{3}\\right)-N\\right|&lt;\\varepsilon $$</span><p>has a solution in prime numbers <i>p</i><sub>1</sub><i>, p</i><sub>2</sub><i>,</i> and <i>p</i><sub>3</sub><i>.</i></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"25 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tangent Inequality Over Primes\",\"authors\":\"S. I. Dimitrov\",\"doi\":\"10.1007/s11253-023-02245-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new Diophantine inequality with prime numbers. Let <span>\\\\(1&lt;c&lt;\\\\frac{10}{9}.\\\\)</span> We show that, for any fixed <i>θ &gt;</i> 1<i>,</i> every sufficiently large positive number <i>N,</i> and a small constant <i>ε &gt;</i> 0<i>,</i> the tangent inequality\\n</p><span>$$\\\\left|{p}_{1}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{1}\\\\right)+{p}_{2}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{2}\\\\right)+{p}_{3}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{3}\\\\right)-N\\\\right|&lt;\\\\varepsilon $$</span><p>has a solution in prime numbers <i>p</i><sub>1</sub><i>, p</i><sub>2</sub><i>,</i> and <i>p</i><sub>3</sub><i>.</i></p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02245-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02245-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个新的素数丢芬图不等式。让 \(1<c<\frac{10}{9}.\) 我们证明,对于任意固定的θ &gt;1、每一个足够大的正数N,以及一个小常数ε &gt;0, tan不等式$$\left|{p}_{1}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{1}\right)+{p}_{2}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{2}\right)+{p}_{3}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{3}\right)-N\right|<\varepsilon $$有质数p1 p2 p3的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Tangent Inequality Over Primes

We introduce a new Diophantine inequality with prime numbers. Let \(1<c<\frac{10}{9}.\) We show that, for any fixed θ > 1, every sufficiently large positive number N, and a small constant ε > 0, the tangent inequality

$$\left|{p}_{1}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{1}\right)+{p}_{2}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{2}\right)+{p}_{3}^{c} {\mathrm{tan}}^{\theta }\left(\mathrm{log}{p}_{3}\right)-N\right|<\varepsilon $$

has a solution in prime numbers p1, p2, and p3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信