{"title":"质数上的正切不等式","authors":"S. I. Dimitrov","doi":"10.1007/s11253-023-02245-z","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new Diophantine inequality with prime numbers. Let <span>\\(1<c<\\frac{10}{9}.\\)</span> We show that, for any fixed <i>θ ></i> 1<i>,</i> every sufficiently large positive number <i>N,</i> and a small constant <i>ε ></i> 0<i>,</i> the tangent inequality\n</p><span>$$\\left|{p}_{1}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{1}\\right)+{p}_{2}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{2}\\right)+{p}_{3}^{c} {\\mathrm{tan}}^{\\theta }\\left(\\mathrm{log}{p}_{3}\\right)-N\\right|<\\varepsilon $$</span><p>has a solution in prime numbers <i>p</i><sub>1</sub><i>, p</i><sub>2</sub><i>,</i> and <i>p</i><sub>3</sub><i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tangent Inequality Over Primes\",\"authors\":\"S. I. Dimitrov\",\"doi\":\"10.1007/s11253-023-02245-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new Diophantine inequality with prime numbers. Let <span>\\\\(1<c<\\\\frac{10}{9}.\\\\)</span> We show that, for any fixed <i>θ ></i> 1<i>,</i> every sufficiently large positive number <i>N,</i> and a small constant <i>ε ></i> 0<i>,</i> the tangent inequality\\n</p><span>$$\\\\left|{p}_{1}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{1}\\\\right)+{p}_{2}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{2}\\\\right)+{p}_{3}^{c} {\\\\mathrm{tan}}^{\\\\theta }\\\\left(\\\\mathrm{log}{p}_{3}\\\\right)-N\\\\right|<\\\\varepsilon $$</span><p>has a solution in prime numbers <i>p</i><sub>1</sub><i>, p</i><sub>2</sub><i>,</i> and <i>p</i><sub>3</sub><i>.</i></p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02245-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02245-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a new Diophantine inequality with prime numbers. Let \(1<c<\frac{10}{9}.\) We show that, for any fixed θ > 1, every sufficiently large positive number N, and a small constant ε > 0, the tangent inequality