{"title":"SARS-CoV-2多碱基蛋白切割基序的可能人类起源。","authors":"Antonio R Romeu","doi":"10.1186/s12863-023-01169-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The key evolutionary step leading to the pandemic virus was the acquisition of the PRRA furin cleavage motif at the spike glycoprotein S1/S2 junction by a progenitor of SARS-CoV-2. Two of its features draw attention: (i) it is absent in other known lineage B beta-coronaviruses, including the newly discovered coronaviruses in bats from Laos and Vietnam, which are the closest known relatives of the covid virus; and, (ii) it introduced the pair of arginine codons (CGG-CGG), whose usage is extremely rare in coronaviruses. With an occurrence rate of only 3%, the arginine CGG codon is considered a minority in SARS CoV-2. On the other hand, Laos and Vietnam bat coronaviruses contain receptor-binding domains that are almost identical to that of SARS-CoV-2 and can therefore infect human cells despite the absence of the furin cleavage motif.</p><p><strong>Results: </strong>Based on these data, the aim of this work is to provide a detailed sequence analysis between the SARS-CoV-2 S gene insert encoding PRRA and the human mRNA transcripts. The result showed a 100% match to several mRNA transcripts. The set of human genes whose mRNAs match this S gene insert are ubiquitous and highly expressed, e.g., the ATPase F1 (ATP5F1) and the ubiquitin specific peptidase 21 (USP21) genes; or specific genes of target organs or tissues of the SARS-CoV-2 infection (e.g., MEMO1, SALL3, TRIM17, CWC15, CCDC187, FAM71E2, GAB4, PRDM13). Results suggest that a recombination between the genome of a SARS-CoV-2 progenitor and human mRNA transcripts could be the origin of the S gene 12-nucleotide insert encoding the S protein PRRA motif.</p><p><strong>Conclusions: </strong>The hypothesis of probable human origin of the SARS-CoV-2 polybasic furin cleavage motif is supported by: (i) the nature of human genes whose mRNA sequence 100% match the S gene insert; (ii) the synonymous base substitution in the arginine codons (CGG-CGG); and (iii) further spike glycoprotein PRRA-like insertions suggesting that the acquisition of PRRA may not have been a single recombination event.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"24 1","pages":"71"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664542/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probable human origin of the SARS-CoV-2 polybasic furin cleavage motif.\",\"authors\":\"Antonio R Romeu\",\"doi\":\"10.1186/s12863-023-01169-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The key evolutionary step leading to the pandemic virus was the acquisition of the PRRA furin cleavage motif at the spike glycoprotein S1/S2 junction by a progenitor of SARS-CoV-2. Two of its features draw attention: (i) it is absent in other known lineage B beta-coronaviruses, including the newly discovered coronaviruses in bats from Laos and Vietnam, which are the closest known relatives of the covid virus; and, (ii) it introduced the pair of arginine codons (CGG-CGG), whose usage is extremely rare in coronaviruses. With an occurrence rate of only 3%, the arginine CGG codon is considered a minority in SARS CoV-2. On the other hand, Laos and Vietnam bat coronaviruses contain receptor-binding domains that are almost identical to that of SARS-CoV-2 and can therefore infect human cells despite the absence of the furin cleavage motif.</p><p><strong>Results: </strong>Based on these data, the aim of this work is to provide a detailed sequence analysis between the SARS-CoV-2 S gene insert encoding PRRA and the human mRNA transcripts. The result showed a 100% match to several mRNA transcripts. The set of human genes whose mRNAs match this S gene insert are ubiquitous and highly expressed, e.g., the ATPase F1 (ATP5F1) and the ubiquitin specific peptidase 21 (USP21) genes; or specific genes of target organs or tissues of the SARS-CoV-2 infection (e.g., MEMO1, SALL3, TRIM17, CWC15, CCDC187, FAM71E2, GAB4, PRDM13). Results suggest that a recombination between the genome of a SARS-CoV-2 progenitor and human mRNA transcripts could be the origin of the S gene 12-nucleotide insert encoding the S protein PRRA motif.</p><p><strong>Conclusions: </strong>The hypothesis of probable human origin of the SARS-CoV-2 polybasic furin cleavage motif is supported by: (i) the nature of human genes whose mRNA sequence 100% match the S gene insert; (ii) the synonymous base substitution in the arginine codons (CGG-CGG); and (iii) further spike glycoprotein PRRA-like insertions suggesting that the acquisition of PRRA may not have been a single recombination event.</p>\",\"PeriodicalId\":72427,\"journal\":{\"name\":\"BMC genomic data\",\"volume\":\"24 1\",\"pages\":\"71\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664542/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC genomic data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12863-023-01169-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-023-01169-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Probable human origin of the SARS-CoV-2 polybasic furin cleavage motif.
Background: The key evolutionary step leading to the pandemic virus was the acquisition of the PRRA furin cleavage motif at the spike glycoprotein S1/S2 junction by a progenitor of SARS-CoV-2. Two of its features draw attention: (i) it is absent in other known lineage B beta-coronaviruses, including the newly discovered coronaviruses in bats from Laos and Vietnam, which are the closest known relatives of the covid virus; and, (ii) it introduced the pair of arginine codons (CGG-CGG), whose usage is extremely rare in coronaviruses. With an occurrence rate of only 3%, the arginine CGG codon is considered a minority in SARS CoV-2. On the other hand, Laos and Vietnam bat coronaviruses contain receptor-binding domains that are almost identical to that of SARS-CoV-2 and can therefore infect human cells despite the absence of the furin cleavage motif.
Results: Based on these data, the aim of this work is to provide a detailed sequence analysis between the SARS-CoV-2 S gene insert encoding PRRA and the human mRNA transcripts. The result showed a 100% match to several mRNA transcripts. The set of human genes whose mRNAs match this S gene insert are ubiquitous and highly expressed, e.g., the ATPase F1 (ATP5F1) and the ubiquitin specific peptidase 21 (USP21) genes; or specific genes of target organs or tissues of the SARS-CoV-2 infection (e.g., MEMO1, SALL3, TRIM17, CWC15, CCDC187, FAM71E2, GAB4, PRDM13). Results suggest that a recombination between the genome of a SARS-CoV-2 progenitor and human mRNA transcripts could be the origin of the S gene 12-nucleotide insert encoding the S protein PRRA motif.
Conclusions: The hypothesis of probable human origin of the SARS-CoV-2 polybasic furin cleavage motif is supported by: (i) the nature of human genes whose mRNA sequence 100% match the S gene insert; (ii) the synonymous base substitution in the arginine codons (CGG-CGG); and (iii) further spike glycoprotein PRRA-like insertions suggesting that the acquisition of PRRA may not have been a single recombination event.