{"title":"纯化重组人白细胞介素-3对长期骨髓培养中人造血祖细胞生长的影响。","authors":"G Hangoc, H E Broxmeyer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant human interleukin-3 (rhuIL-3) was assessed for its effects on the growth of normal human hematopoietic bone marrow nucleated cells, and on granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells in a liquid culture system which allows for the prolonged growth of these cells in vitro. RhuIL-3, at concentrations of 100 and 500 units/mL, significantly enhanced the numbers of nucleated cells, as well as the numbers of supernatant and adherent CFU-GM and BFU-E growing in tissue culture flasks or dishes over a period of 4 to 6 weeks. The results demonstrated the rhuIL-3 has a stimulating effect on the growth of human marrow cells in prolonged culture. This information is consistent with the effects of rhuIL-3 in short-term marrow colony assays in vitro and with the in vivo actions of recombinant murine IL-3 in mice, and may be of relevance to clinical trials that will be assessing the hematopoietic effects of rhuIL-3 in humans.</p>","PeriodicalId":77042,"journal":{"name":"Biotechnology therapeutics","volume":"1 1","pages":"17-29"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of purified recombinant human interleukin-3 on the growth of human hematopoietic progenitor cells in \\\"long-term\\\" bone marrow culture.\",\"authors\":\"G Hangoc, H E Broxmeyer\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant human interleukin-3 (rhuIL-3) was assessed for its effects on the growth of normal human hematopoietic bone marrow nucleated cells, and on granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells in a liquid culture system which allows for the prolonged growth of these cells in vitro. RhuIL-3, at concentrations of 100 and 500 units/mL, significantly enhanced the numbers of nucleated cells, as well as the numbers of supernatant and adherent CFU-GM and BFU-E growing in tissue culture flasks or dishes over a period of 4 to 6 weeks. The results demonstrated the rhuIL-3 has a stimulating effect on the growth of human marrow cells in prolonged culture. This information is consistent with the effects of rhuIL-3 in short-term marrow colony assays in vitro and with the in vivo actions of recombinant murine IL-3 in mice, and may be of relevance to clinical trials that will be assessing the hematopoietic effects of rhuIL-3 in humans.</p>\",\"PeriodicalId\":77042,\"journal\":{\"name\":\"Biotechnology therapeutics\",\"volume\":\"1 1\",\"pages\":\"17-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology therapeutics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of purified recombinant human interleukin-3 on the growth of human hematopoietic progenitor cells in "long-term" bone marrow culture.
Recombinant human interleukin-3 (rhuIL-3) was assessed for its effects on the growth of normal human hematopoietic bone marrow nucleated cells, and on granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells in a liquid culture system which allows for the prolonged growth of these cells in vitro. RhuIL-3, at concentrations of 100 and 500 units/mL, significantly enhanced the numbers of nucleated cells, as well as the numbers of supernatant and adherent CFU-GM and BFU-E growing in tissue culture flasks or dishes over a period of 4 to 6 weeks. The results demonstrated the rhuIL-3 has a stimulating effect on the growth of human marrow cells in prolonged culture. This information is consistent with the effects of rhuIL-3 in short-term marrow colony assays in vitro and with the in vivo actions of recombinant murine IL-3 in mice, and may be of relevance to clinical trials that will be assessing the hematopoietic effects of rhuIL-3 in humans.