家庭厌氧消化池中的微生物群落结构揭示了潜在的不同废物转化途径

IF 1.8 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL
Heidi L. Gough, Abigail Kargol, David A.C. Beck, Benjamin G. Therrien, Bed Mani Dahal, Michael D. Marsolek
{"title":"家庭厌氧消化池中的微生物群落结构揭示了潜在的不同废物转化途径","authors":"Heidi L. Gough, Abigail Kargol, David A.C. Beck, Benjamin G. Therrien, Bed Mani Dahal, Michael D. Marsolek","doi":"10.1089/ees.2023.0038","DOIUrl":null,"url":null,"abstract":"Family-scale rural digesters are widely implemented in Nepal for waste management, resource recovery, and environmental stewardship for distributed communities. However, there is little documentation on the microbial community structures in real-world family farm digesters. This work compared microbial community structures in four family digesters with a near-by municipal digester. Included in the family digesters was a high-altitude family digester located on Mt. Everest in Mosi, Nepal (2,634 m elevation). Differences in the community structures included the prevalence in family digesters of Bathyarchaeota MGC-6. MCG-6 is an archaeal population putatively involved in autotrophic acetate generation and conversion of cellulose to sugars. In addition, Rikenellaceae DMER64, a population thought to degrade sugars, was more prevalent in the family digesters. The ratio of Methanothrix to hydrogenotrophic methanogens was higher in the family digesters. In addition, the dominant species of syntrophic hydrogen-producing bacteria differed. Syntrophobacter and Syntrophomonas species, documented for their critical roles in waste activated sludge digesters, were not detected. In conclusion, observed differences in microbial community composition suggested a capacity to support different substrate conversion pathways and a major role of Archaea beyond methanogenesis among the studied digesters.","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"126 ","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microbial Community Structures in Family Anaerobic Digesters Reveal Potentially Differing Waste Conversion Pathways\",\"authors\":\"Heidi L. Gough, Abigail Kargol, David A.C. Beck, Benjamin G. Therrien, Bed Mani Dahal, Michael D. Marsolek\",\"doi\":\"10.1089/ees.2023.0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Family-scale rural digesters are widely implemented in Nepal for waste management, resource recovery, and environmental stewardship for distributed communities. However, there is little documentation on the microbial community structures in real-world family farm digesters. This work compared microbial community structures in four family digesters with a near-by municipal digester. Included in the family digesters was a high-altitude family digester located on Mt. Everest in Mosi, Nepal (2,634 m elevation). Differences in the community structures included the prevalence in family digesters of Bathyarchaeota MGC-6. MCG-6 is an archaeal population putatively involved in autotrophic acetate generation and conversion of cellulose to sugars. In addition, Rikenellaceae DMER64, a population thought to degrade sugars, was more prevalent in the family digesters. The ratio of Methanothrix to hydrogenotrophic methanogens was higher in the family digesters. In addition, the dominant species of syntrophic hydrogen-producing bacteria differed. Syntrophobacter and Syntrophomonas species, documented for their critical roles in waste activated sludge digesters, were not detected. In conclusion, observed differences in microbial community composition suggested a capacity to support different substrate conversion pathways and a major role of Archaea beyond methanogenesis among the studied digesters.\",\"PeriodicalId\":11777,\"journal\":{\"name\":\"Environmental Engineering Science\",\"volume\":\"126 \",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Engineering Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/ees.2023.0038\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ees.2023.0038","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

家庭规模的农村沼气池在尼泊尔广泛实施,用于分散社区的废物管理、资源回收和环境管理。然而,关于现实世界家庭农场消化器中微生物群落结构的文献很少。这项工作将四个家庭消化器中的微生物群落结构与附近的市政消化器进行了比较。家庭蒸煮器包括位于尼泊尔Mosi珠穆朗玛峰(海拔2634米)的高海拔家庭蒸煮器。群落结构的差异包括深海古菌MGC-6在家庭消化器中的患病率。MCG-6是一种古细菌种群,据推测参与自养醋酸盐的生成和纤维素向糖的转化。此外,Rikenellaceae DMER64,一个被认为可以降解糖的种群,在家族消化器中更为普遍。产甲烷菌与氢营养型产甲烷菌的比例在家族沼气池中较高。此外,共生产氢菌的优势种也存在差异。在废物活性污泥消化池中有重要作用的共生细菌和共生单胞菌未被检测到。综上所述,观察到的微生物群落组成差异表明,在所研究的消化器中,古细菌具有支持不同底物转化途径的能力,并且除了产甲烷之外,古细菌还发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial Community Structures in Family Anaerobic Digesters Reveal Potentially Differing Waste Conversion Pathways
Family-scale rural digesters are widely implemented in Nepal for waste management, resource recovery, and environmental stewardship for distributed communities. However, there is little documentation on the microbial community structures in real-world family farm digesters. This work compared microbial community structures in four family digesters with a near-by municipal digester. Included in the family digesters was a high-altitude family digester located on Mt. Everest in Mosi, Nepal (2,634 m elevation). Differences in the community structures included the prevalence in family digesters of Bathyarchaeota MGC-6. MCG-6 is an archaeal population putatively involved in autotrophic acetate generation and conversion of cellulose to sugars. In addition, Rikenellaceae DMER64, a population thought to degrade sugars, was more prevalent in the family digesters. The ratio of Methanothrix to hydrogenotrophic methanogens was higher in the family digesters. In addition, the dominant species of syntrophic hydrogen-producing bacteria differed. Syntrophobacter and Syntrophomonas species, documented for their critical roles in waste activated sludge digesters, were not detected. In conclusion, observed differences in microbial community composition suggested a capacity to support different substrate conversion pathways and a major role of Archaea beyond methanogenesis among the studied digesters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Engineering Science
Environmental Engineering Science 环境科学-工程:环境
CiteScore
3.90
自引率
5.60%
发文量
67
审稿时长
4.9 months
期刊介绍: Environmental Engineering Science explores innovative solutions to problems in air, water, and land contamination and waste disposal, with coverage of climate change, environmental risk assessment and management, green technologies, sustainability, and environmental policy. Published monthly online, the Journal features applications of environmental engineering and scientific discoveries, policy issues, environmental economics, and sustainable development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信