基于聚类和人类视觉系统模型的图像色调映射

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xueyu Han , Ishtiaq Rasool Khan , Susanto Rahardja
{"title":"基于聚类和人类视觉系统模型的图像色调映射","authors":"Xueyu Han ,&nbsp;Ishtiaq Rasool Khan ,&nbsp;Susanto Rahardja","doi":"10.1016/j.image.2023.117075","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Natural scenes generally have very high dynamic range (HDR) which cannot be captured in the standard dynamic range (SDR) images. HDR imaging techniques can be used to capture these details in both dark and bright regions, and the resultant HDR images can be tone mapped to reproduce them on SDR displays. To adapt to different applications, the tone mapping operator (TMO) should be able to achieve high performance for diverse HDR scenes. In this paper, we present a clustering-based TMO by embedding </span>human visual system models that function effectively in different scenes. A hierarchical scheme is applied for clustering to reduce the </span>computational complexity<span>. We also propose a detail preservation method by superimposing the details of original HDR images to enhance local contrasts, and a color preservation method by limiting the adaptive saturation parameter to control the color saturation attenuating. The effectiveness of our method is assessed by comparing with state-of-the-art TMOs quantitatively on large-scale HDR datasets and qualitatively with a group of subjects. Experimental results of both objective and subjective evaluations show that the proposed method achieves improvements over the competing methods in generating high quality tone-mapped images with good contrast and natural color appearance for diverse HDR scenes.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"120 ","pages":"Article 117075"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image tone mapping based on clustering and human visual system models\",\"authors\":\"Xueyu Han ,&nbsp;Ishtiaq Rasool Khan ,&nbsp;Susanto Rahardja\",\"doi\":\"10.1016/j.image.2023.117075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Natural scenes generally have very high dynamic range (HDR) which cannot be captured in the standard dynamic range (SDR) images. HDR imaging techniques can be used to capture these details in both dark and bright regions, and the resultant HDR images can be tone mapped to reproduce them on SDR displays. To adapt to different applications, the tone mapping operator (TMO) should be able to achieve high performance for diverse HDR scenes. In this paper, we present a clustering-based TMO by embedding </span>human visual system models that function effectively in different scenes. A hierarchical scheme is applied for clustering to reduce the </span>computational complexity<span>. We also propose a detail preservation method by superimposing the details of original HDR images to enhance local contrasts, and a color preservation method by limiting the adaptive saturation parameter to control the color saturation attenuating. The effectiveness of our method is assessed by comparing with state-of-the-art TMOs quantitatively on large-scale HDR datasets and qualitatively with a group of subjects. Experimental results of both objective and subjective evaluations show that the proposed method achieves improvements over the competing methods in generating high quality tone-mapped images with good contrast and natural color appearance for diverse HDR scenes.</span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"120 \",\"pages\":\"Article 117075\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523001571\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001571","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自然场景通常具有非常高的动态范围(HDR),这是标准动态范围(SDR)图像无法捕捉到的。HDR成像技术可用于在暗区和亮区捕获这些细节,并且由此产生的HDR图像可以色调映射以在SDR显示器上再现它们。为了适应不同的应用,色调映射算子(TMO)应该能够在不同的HDR场景中实现高性能。在本文中,我们通过嵌入在不同场景中有效工作的人类视觉系统模型,提出了一种基于聚类的TMO。为了降低计算复杂度,采用了一种分层的聚类方法。我们还提出了一种通过叠加原始HDR图像的细节来增强局部对比度的细节保存方法,以及一种通过限制自适应饱和度参数来控制色彩饱和度衰减的颜色保存方法。通过在大规模HDR数据集上与最先进的TMOs进行定量比较,并与一组受试者进行定性比较,评估了我们方法的有效性。客观和主观评价的实验结果表明,该方法在生成高质量、对比度好、色彩自然的HDR场景色调映射图像方面取得了一定的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image tone mapping based on clustering and human visual system models

Natural scenes generally have very high dynamic range (HDR) which cannot be captured in the standard dynamic range (SDR) images. HDR imaging techniques can be used to capture these details in both dark and bright regions, and the resultant HDR images can be tone mapped to reproduce them on SDR displays. To adapt to different applications, the tone mapping operator (TMO) should be able to achieve high performance for diverse HDR scenes. In this paper, we present a clustering-based TMO by embedding human visual system models that function effectively in different scenes. A hierarchical scheme is applied for clustering to reduce the computational complexity. We also propose a detail preservation method by superimposing the details of original HDR images to enhance local contrasts, and a color preservation method by limiting the adaptive saturation parameter to control the color saturation attenuating. The effectiveness of our method is assessed by comparing with state-of-the-art TMOs quantitatively on large-scale HDR datasets and qualitatively with a group of subjects. Experimental results of both objective and subjective evaluations show that the proposed method achieves improvements over the competing methods in generating high quality tone-mapped images with good contrast and natural color appearance for diverse HDR scenes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信