驯服纯对的基本群和Abhyankar引理

IF 0.9 1区 数学 Q2 MATHEMATICS
Javier Carvajal-Rojas, Axel Stäbler
{"title":"驯服纯对的基本群和Abhyankar引理","authors":"Javier Carvajal-Rojas, Axel Stäbler","doi":"10.2140/ant.2023.17.43","DOIUrl":null,"url":null,"abstract":"Let $(R,\\mathfrak{m}, k)$ be a strictly local normal $k$-domain of positive characteristic and $P$ be a prime divisor on $X=\\text{Spec } R$. We study the Galois category of finite covers over $X$ that are at worst tamely ramified over $P$ in the sense of Grothendieck--Murre. Assuming that $(X,P)$ is a purely $F$-regular pair, our main result is that every Galois cover $f \\: Y \\to X$ in that Galois category satisfies that $\\bigl(f^{-1}(P)\\bigr)_{\\text{red}}$ is a prime divisor. We shall explain why this should be thought as a (partial) generalization of a classical theorem due to S.S.~Abhyankar regarding the \\'etale-local structure of tamely ramified covers between normal schemes with respect to a divisor with normal crossings. Additionally, we investigate the formal consequences this result has on the structure of the fundamental group representing the Galois category. We also obtain a characteristic zero analog by reduction to positive characteristics following Bhatt--Gabber--Olsson's methods.","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"43 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tame fundamental groups of pure pairs and Abhyankar’s lemma\",\"authors\":\"Javier Carvajal-Rojas, Axel Stäbler\",\"doi\":\"10.2140/ant.2023.17.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(R,\\\\mathfrak{m}, k)$ be a strictly local normal $k$-domain of positive characteristic and $P$ be a prime divisor on $X=\\\\text{Spec } R$. We study the Galois category of finite covers over $X$ that are at worst tamely ramified over $P$ in the sense of Grothendieck--Murre. Assuming that $(X,P)$ is a purely $F$-regular pair, our main result is that every Galois cover $f \\\\: Y \\\\to X$ in that Galois category satisfies that $\\\\bigl(f^{-1}(P)\\\\bigr)_{\\\\text{red}}$ is a prime divisor. We shall explain why this should be thought as a (partial) generalization of a classical theorem due to S.S.~Abhyankar regarding the \\\\'etale-local structure of tamely ramified covers between normal schemes with respect to a divisor with normal crossings. Additionally, we investigate the formal consequences this result has on the structure of the fundamental group representing the Galois category. We also obtain a characteristic zero analog by reduction to positive characteristics following Bhatt--Gabber--Olsson's methods.\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.43\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.43","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$(R,\mathfrak{m}, k)$是具有正特征的严格局部正规$k$-域,$P$是$X=\text{Spec} R$上的素数因子。我们研究了$X$上有限覆盖的伽罗瓦范畴,这些有限覆盖在$P$上最坏是在Grothendieck- Murre意义上的分支。假设$(X,P)$是一个纯粹的$F$-正则对,我们的主要结果是,在该伽罗瓦范畴中的每一个伽罗瓦覆盖$F \: Y \到X$都满足$\bigl(F ^{-1}(P)\bigr)_{\text{red}}$是一个素数因子。我们将解释为什么这应该被认为是一个经典定理的(部分)推广,这个经典定理是由S.S.~Abhyankar提出的,它是关于正规方案之间的正规分支覆盖的标准局部结构的,关于一个有正规交叉的除数。此外,我们研究了这一结果对表示伽罗瓦范畴的基本群结构的形式后果。我们还根据Bhatt- Gabber- Olsson的方法,通过还原为正特性,获得了特征零模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tame fundamental groups of pure pairs and Abhyankar’s lemma
Let $(R,\mathfrak{m}, k)$ be a strictly local normal $k$-domain of positive characteristic and $P$ be a prime divisor on $X=\text{Spec } R$. We study the Galois category of finite covers over $X$ that are at worst tamely ramified over $P$ in the sense of Grothendieck--Murre. Assuming that $(X,P)$ is a purely $F$-regular pair, our main result is that every Galois cover $f \: Y \to X$ in that Galois category satisfies that $\bigl(f^{-1}(P)\bigr)_{\text{red}}$ is a prime divisor. We shall explain why this should be thought as a (partial) generalization of a classical theorem due to S.S.~Abhyankar regarding the \'etale-local structure of tamely ramified covers between normal schemes with respect to a divisor with normal crossings. Additionally, we investigate the formal consequences this result has on the structure of the fundamental group representing the Galois category. We also obtain a characteristic zero analog by reduction to positive characteristics following Bhatt--Gabber--Olsson's methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信