基于时频特征融合和深度学习特征的脑电信号癫痫发作检测

Seshasai Priya Sadam, Nalini NJ
{"title":"基于时频特征融合和深度学习特征的脑电信号癫痫发作检测","authors":"Seshasai Priya Sadam, Nalini NJ","doi":"10.37391/ijeer.110329","DOIUrl":null,"url":null,"abstract":"A persistent brain's neurological state is epilepsy, characterised by recurring seizure. Brain electrical activity is measured using EEG signals, which can be used to detect and diagnose significant brain problems such as Epilepsy, Autism, Alzheimer’s etc. However, manual EEG data processing is time-consuming, requires highly skilled clinicians, and is associated with low inter-rater reliability (IRA). A computer-aided diagnosis approach for epileptic seizure detection from multichannel EEG recordings by fusing the time-frequency features and the deep learning features extracted from Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) model using canonical correlation analysis (CCA) method is provided in this study. Deep Learning features are extracted using CNN-GRU layers, motivated by recent advancements in image classification and optimised for use with EEG data. We have also extracted time-frequency features such as spectral entropies and Sub Band energies from Empirical mode decomposition (EMD) and Hilbert Marginal Spectrum (HMS). We used CHBMIT dataset to carry out the results and showed that the method proposed for fusing the time-frequency features and deep learning has given better performance.","PeriodicalId":491088,"journal":{"name":"International journal of electrical & electronics research","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Fusion of Time-frequency and Deep Learning Features for Epileptic Seizure Detection using EEG Signals\",\"authors\":\"Seshasai Priya Sadam, Nalini NJ\",\"doi\":\"10.37391/ijeer.110329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A persistent brain's neurological state is epilepsy, characterised by recurring seizure. Brain electrical activity is measured using EEG signals, which can be used to detect and diagnose significant brain problems such as Epilepsy, Autism, Alzheimer’s etc. However, manual EEG data processing is time-consuming, requires highly skilled clinicians, and is associated with low inter-rater reliability (IRA). A computer-aided diagnosis approach for epileptic seizure detection from multichannel EEG recordings by fusing the time-frequency features and the deep learning features extracted from Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) model using canonical correlation analysis (CCA) method is provided in this study. Deep Learning features are extracted using CNN-GRU layers, motivated by recent advancements in image classification and optimised for use with EEG data. We have also extracted time-frequency features such as spectral entropies and Sub Band energies from Empirical mode decomposition (EMD) and Hilbert Marginal Spectrum (HMS). We used CHBMIT dataset to carry out the results and showed that the method proposed for fusing the time-frequency features and deep learning has given better performance.\",\"PeriodicalId\":491088,\"journal\":{\"name\":\"International journal of electrical & electronics research\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrical & electronics research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37391/ijeer.110329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical & electronics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37391/ijeer.110329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一种持续的大脑神经状态是癫痫,其特征是反复发作。脑电活动是用脑电图信号来测量的,它可以用来检测和诊断重大的大脑问题,如癫痫、自闭症、阿尔茨海默氏症等。然而,手工脑电图数据处理耗时,需要高技能的临床医生,并且与低评分可靠性(IRA)相关。采用典型相关分析(CCA)方法,将卷积神经网络门控循环单元(CNN-GRU)模型提取的时频特征与深度学习特征融合,提出了一种多通道脑电图记录癫痫发作的计算机辅助诊断方法。深度学习特征是使用CNN-GRU层提取的,受到图像分类最新进展的激励,并针对EEG数据进行了优化。我们还从经验模态分解(EMD)和希尔伯特边际谱(HMS)中提取了谱熵和子带能量等时频特征。我们使用CHBMIT数据集进行了实验,结果表明所提出的融合时频特征和深度学习的方法取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Fusion of Time-frequency and Deep Learning Features for Epileptic Seizure Detection using EEG Signals
A persistent brain's neurological state is epilepsy, characterised by recurring seizure. Brain electrical activity is measured using EEG signals, which can be used to detect and diagnose significant brain problems such as Epilepsy, Autism, Alzheimer’s etc. However, manual EEG data processing is time-consuming, requires highly skilled clinicians, and is associated with low inter-rater reliability (IRA). A computer-aided diagnosis approach for epileptic seizure detection from multichannel EEG recordings by fusing the time-frequency features and the deep learning features extracted from Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) model using canonical correlation analysis (CCA) method is provided in this study. Deep Learning features are extracted using CNN-GRU layers, motivated by recent advancements in image classification and optimised for use with EEG data. We have also extracted time-frequency features such as spectral entropies and Sub Band energies from Empirical mode decomposition (EMD) and Hilbert Marginal Spectrum (HMS). We used CHBMIT dataset to carry out the results and showed that the method proposed for fusing the time-frequency features and deep learning has given better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信