{"title":"在大型环境化学课程中实施团队学习及其对学生学习和认知的影响","authors":"Priyanka Lekhi and Trish Varao-Sousa","doi":"10.1039/D3RP00158J","DOIUrl":null,"url":null,"abstract":"<p >Team-based learning (TBL) is an instructional strategy where students participate in a set of activities including, applying course concepts to real-life case studies in instructor-selected teams. Here, we describe how TBL has been incorporated into a 3rd year, large, environmental chemistry course and investigate the benefits of using this strategy. A combination of pre/post survey and coursework data were analyzed to understand: (1) What were student perceptions of TBL? (2) How did using TBL to deliver content influence student learning, measured by exam performance? (3) How did students’ team skills evolve? Post-survey results indicate that students perceived TBL as enhancing their interest in course content, creating real-world connections, and most helpful for achieving practical critical thinking skills. Student performance on TBL-related final exam items was significantly better (Mean = 73%, SD = 21%) than non TBL-related final exam items, (Mean = 65%, SD = 21%), despite the level of complexity being similar between the two categories. The pre/post survey results indicate that, as compared to the start of term, students reported being significantly more comfortable expressing opinions in group meetings (<em>t</em>(78) = 4.25, <em>p</em> < 0.001, Cohen's <em>d</em> = 0.48), and leading group discussions (<em>t</em>(78) = 3.11, <em>p</em> = 0.003, Cohen's <em>d</em> = 0.35), by the end of the term. The one-minute reflections (completed following the first and fifth TBL activities) indicated that there was a 14% increase (77% <em>vs.</em> 91%) in the number of students reporting on collective team decision making. This study demonstrates the wide-ranging positive impacts of TBL to student learning in a large Environmental Chemistry course all while enhancing active learning and applying chemistry concepts to relevant and real-life case studies.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 193-211"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing team-based learning in a large environmental chemistry course and its impact on student learning and perceptions\",\"authors\":\"Priyanka Lekhi and Trish Varao-Sousa\",\"doi\":\"10.1039/D3RP00158J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Team-based learning (TBL) is an instructional strategy where students participate in a set of activities including, applying course concepts to real-life case studies in instructor-selected teams. Here, we describe how TBL has been incorporated into a 3rd year, large, environmental chemistry course and investigate the benefits of using this strategy. A combination of pre/post survey and coursework data were analyzed to understand: (1) What were student perceptions of TBL? (2) How did using TBL to deliver content influence student learning, measured by exam performance? (3) How did students’ team skills evolve? Post-survey results indicate that students perceived TBL as enhancing their interest in course content, creating real-world connections, and most helpful for achieving practical critical thinking skills. Student performance on TBL-related final exam items was significantly better (Mean = 73%, SD = 21%) than non TBL-related final exam items, (Mean = 65%, SD = 21%), despite the level of complexity being similar between the two categories. The pre/post survey results indicate that, as compared to the start of term, students reported being significantly more comfortable expressing opinions in group meetings (<em>t</em>(78) = 4.25, <em>p</em> < 0.001, Cohen's <em>d</em> = 0.48), and leading group discussions (<em>t</em>(78) = 3.11, <em>p</em> = 0.003, Cohen's <em>d</em> = 0.35), by the end of the term. The one-minute reflections (completed following the first and fifth TBL activities) indicated that there was a 14% increase (77% <em>vs.</em> 91%) in the number of students reporting on collective team decision making. This study demonstrates the wide-ranging positive impacts of TBL to student learning in a large Environmental Chemistry course all while enhancing active learning and applying chemistry concepts to relevant and real-life case studies.</p>\",\"PeriodicalId\":69,\"journal\":{\"name\":\"Chemistry Education Research and Practice\",\"volume\":\" 1\",\"pages\":\" 193-211\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Education Research and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/rp/d3rp00158j\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Education Research and Practice","FirstCategoryId":"95","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/rp/d3rp00158j","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Implementing team-based learning in a large environmental chemistry course and its impact on student learning and perceptions
Team-based learning (TBL) is an instructional strategy where students participate in a set of activities including, applying course concepts to real-life case studies in instructor-selected teams. Here, we describe how TBL has been incorporated into a 3rd year, large, environmental chemistry course and investigate the benefits of using this strategy. A combination of pre/post survey and coursework data were analyzed to understand: (1) What were student perceptions of TBL? (2) How did using TBL to deliver content influence student learning, measured by exam performance? (3) How did students’ team skills evolve? Post-survey results indicate that students perceived TBL as enhancing their interest in course content, creating real-world connections, and most helpful for achieving practical critical thinking skills. Student performance on TBL-related final exam items was significantly better (Mean = 73%, SD = 21%) than non TBL-related final exam items, (Mean = 65%, SD = 21%), despite the level of complexity being similar between the two categories. The pre/post survey results indicate that, as compared to the start of term, students reported being significantly more comfortable expressing opinions in group meetings (t(78) = 4.25, p < 0.001, Cohen's d = 0.48), and leading group discussions (t(78) = 3.11, p = 0.003, Cohen's d = 0.35), by the end of the term. The one-minute reflections (completed following the first and fifth TBL activities) indicated that there was a 14% increase (77% vs. 91%) in the number of students reporting on collective team decision making. This study demonstrates the wide-ranging positive impacts of TBL to student learning in a large Environmental Chemistry course all while enhancing active learning and applying chemistry concepts to relevant and real-life case studies.