DC-DC电源变换器产生的共模噪声和差模噪声的估计

Pathala Venkata Sai Charishma, Pappu.V. Y Jayasree
{"title":"DC-DC电源变换器产生的共模噪声和差模噪声的估计","authors":"Pathala Venkata Sai Charishma, Pappu.V. Y Jayasree","doi":"10.37391/ijeer.110330","DOIUrl":null,"url":null,"abstract":"The study contains a review of the body of knowledge regarding differential mode (DM) and common mode (CM)noise and how they affect power converter performance. With an emphasis on practical application, this work seeks to give an estimation of differential mode (DM) and common mode (CM) noise for cutting-edge DC-DC power converters such as Zeta converters, Single Ended Primary Inductance Converters (SEPIC), and Cuk converters. Active noise separators and Differential mode noise separators are used as a measurement technique to quantify DM and CM noise, considering a number of variables including input voltage, output voltage, load current, and switching frequency. By using filtering techniques, DM and CM noise can be reduced. Both CM noise and DM noise are created by the Zeta converter at 114 dBµV and 108 dBµV, respectively. CM noise from the SEPIC converter is 119 dBµV, and DM noise is 114 dBµV. With values of CM noise 98 dBµV and DM noise 106 dBµV, Cuk converter produces less noise when compared to Zeta and SEPIC converter. The results show that power converters can generate DM and CM noise, and that this noise is over the Comité International Special des Perturbations Radioélectriques [CISPR] limit line. The conducted emission range for various electronic devices is provided by this standard. This study provides useful insights for power converter designers and engineers to optimize the performance of their systems in practical applications.","PeriodicalId":491088,"journal":{"name":"International journal of electrical & electronics research","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Common Mode noise and Differential Mode noise generated by DC-DC Power Converters\",\"authors\":\"Pathala Venkata Sai Charishma, Pappu.V. Y Jayasree\",\"doi\":\"10.37391/ijeer.110330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study contains a review of the body of knowledge regarding differential mode (DM) and common mode (CM)noise and how they affect power converter performance. With an emphasis on practical application, this work seeks to give an estimation of differential mode (DM) and common mode (CM) noise for cutting-edge DC-DC power converters such as Zeta converters, Single Ended Primary Inductance Converters (SEPIC), and Cuk converters. Active noise separators and Differential mode noise separators are used as a measurement technique to quantify DM and CM noise, considering a number of variables including input voltage, output voltage, load current, and switching frequency. By using filtering techniques, DM and CM noise can be reduced. Both CM noise and DM noise are created by the Zeta converter at 114 dBµV and 108 dBµV, respectively. CM noise from the SEPIC converter is 119 dBµV, and DM noise is 114 dBµV. With values of CM noise 98 dBµV and DM noise 106 dBµV, Cuk converter produces less noise when compared to Zeta and SEPIC converter. The results show that power converters can generate DM and CM noise, and that this noise is over the Comité International Special des Perturbations Radioélectriques [CISPR] limit line. The conducted emission range for various electronic devices is provided by this standard. This study provides useful insights for power converter designers and engineers to optimize the performance of their systems in practical applications.\",\"PeriodicalId\":491088,\"journal\":{\"name\":\"International journal of electrical & electronics research\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrical & electronics research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37391/ijeer.110330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical & electronics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37391/ijeer.110330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究包含了关于差分模式(DM)和共模(CM)噪声以及它们如何影响功率转换器性能的知识体系的回顾。在实际应用的重点下,这项工作旨在对先进的DC-DC功率转换器(如Zeta转换器、单端初级电感转换器(SEPIC)和Cuk转换器)的差模(DM)和共模(CM)噪声进行估计。主动噪声分离器和差分模式噪声分离器是一种量化DM和CM噪声的测量技术,考虑了许多变量,包括输入电压、输出电压、负载电流和开关频率。采用滤波技术可以降低DM和CM噪声。CM噪声和DM噪声分别由114 dBµV和108 dBµV的Zeta转换器产生。SEPIC变换器的CM噪声为119 dBµV, DM噪声为114 dBµV。Cuk变换器的CM噪声为98 dBµV, DM噪声为106 dBµV,与Zeta和SEPIC变换器相比,Cuk变换器产生的噪声更小。结果表明,功率变换器可以产生DM和CM噪声,并且该噪声超过了国际特殊摄动无线电通信委员会(CISPR)的限值。本标准规定了各种电子器件的传导发射范围。本研究为电源转换器设计人员和工程师在实际应用中优化其系统性能提供了有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Common Mode noise and Differential Mode noise generated by DC-DC Power Converters
The study contains a review of the body of knowledge regarding differential mode (DM) and common mode (CM)noise and how they affect power converter performance. With an emphasis on practical application, this work seeks to give an estimation of differential mode (DM) and common mode (CM) noise for cutting-edge DC-DC power converters such as Zeta converters, Single Ended Primary Inductance Converters (SEPIC), and Cuk converters. Active noise separators and Differential mode noise separators are used as a measurement technique to quantify DM and CM noise, considering a number of variables including input voltage, output voltage, load current, and switching frequency. By using filtering techniques, DM and CM noise can be reduced. Both CM noise and DM noise are created by the Zeta converter at 114 dBµV and 108 dBµV, respectively. CM noise from the SEPIC converter is 119 dBµV, and DM noise is 114 dBµV. With values of CM noise 98 dBµV and DM noise 106 dBµV, Cuk converter produces less noise when compared to Zeta and SEPIC converter. The results show that power converters can generate DM and CM noise, and that this noise is over the Comité International Special des Perturbations Radioélectriques [CISPR] limit line. The conducted emission range for various electronic devices is provided by this standard. This study provides useful insights for power converter designers and engineers to optimize the performance of their systems in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信