基于动态阈值的虚拟机迁移策略

{"title":"基于动态阈值的虚拟机迁移策略","authors":"","doi":"10.25236/ajcis.2023.060920","DOIUrl":null,"url":null,"abstract":"With the rapid development of cloud computing, virtualization is widely used in data centers for resource management. However, traditional static threshold-based virtual machine migration strategies struggle to adapt to changing workloads. To address this, we propose a dynamic threshold-based strategy that monitors resource utilization to optimize migration timing and reduce costs. Simulation experiments on a real data center confirm the superior performance of our approach compared to static methods. This intelligent and efficient strategy enhances resource management, and energy efficiency in data centers.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Virtual Machine Migration Strategy Based on Dynamic Threshold\",\"authors\":\"\",\"doi\":\"10.25236/ajcis.2023.060920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of cloud computing, virtualization is widely used in data centers for resource management. However, traditional static threshold-based virtual machine migration strategies struggle to adapt to changing workloads. To address this, we propose a dynamic threshold-based strategy that monitors resource utilization to optimize migration timing and reduce costs. Simulation experiments on a real data center confirm the superior performance of our approach compared to static methods. This intelligent and efficient strategy enhances resource management, and energy efficiency in data centers.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25236/ajcis.2023.060920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.060920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着云计算的快速发展,虚拟化技术被广泛应用于数据中心的资源管理。然而,传统的基于静态阈值的虚拟机迁移策略难以适应不断变化的工作负载。为了解决这个问题,我们提出了一个动态的基于阈值的策略,该策略监视资源利用率,以优化迁移时间并降低成本。在实际数据中心进行的仿真实验证实了该方法优于静态方法的性能。这种智能高效的策略增强了数据中心的资源管理和能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Virtual Machine Migration Strategy Based on Dynamic Threshold
With the rapid development of cloud computing, virtualization is widely used in data centers for resource management. However, traditional static threshold-based virtual machine migration strategies struggle to adapt to changing workloads. To address this, we propose a dynamic threshold-based strategy that monitors resource utilization to optimize migration timing and reduce costs. Simulation experiments on a real data center confirm the superior performance of our approach compared to static methods. This intelligent and efficient strategy enhances resource management, and energy efficiency in data centers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信