基于矢量的VSLAM系统高效跟踪专用处理器体系结构

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Dejian Li;Xi Feng;Chongfei Shen;Qi Chen;Lixin Yang;Sihai Qiu;Xin Jin;Meng Liu
{"title":"基于矢量的VSLAM系统高效跟踪专用处理器体系结构","authors":"Dejian Li;Xi Feng;Chongfei Shen;Qi Chen;Lixin Yang;Sihai Qiu;Xin Jin;Meng Liu","doi":"10.1109/LES.2023.3298900","DOIUrl":null,"url":null,"abstract":"This letter introduces a dedicated processor architecture, called MEGACORE, which leverages vector technology to enhance tracking performance in visual simultaneous localization and mapping (VSLAM) systems. By harnessing the inherent parallelism of vector processing and incorporating a floating point unit (FPU), MEGACORE achieves significant acceleration in the tracking task of VSLAM. Through careful optimizations, we achieved notable improvements compared to the baseline design. Our optimizations resulted in a 14.9% reduction in the area parameter and a 4.4% reduction in power consumption. Furthermore, by conducting application benchmarks, we determined that the average speedup ratio across all stages of the tracking process is 3.25. These findings highlight the effectiveness of MEGACORE in improving the efficiency and performance of VSLAM systems, making it a promising solution for real-world implementations in embedded systems.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"15 4","pages":"182-185"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector-Based Dedicated Processor Architecture for Efficient Tracking in VSLAM Systems\",\"authors\":\"Dejian Li;Xi Feng;Chongfei Shen;Qi Chen;Lixin Yang;Sihai Qiu;Xin Jin;Meng Liu\",\"doi\":\"10.1109/LES.2023.3298900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a dedicated processor architecture, called MEGACORE, which leverages vector technology to enhance tracking performance in visual simultaneous localization and mapping (VSLAM) systems. By harnessing the inherent parallelism of vector processing and incorporating a floating point unit (FPU), MEGACORE achieves significant acceleration in the tracking task of VSLAM. Through careful optimizations, we achieved notable improvements compared to the baseline design. Our optimizations resulted in a 14.9% reduction in the area parameter and a 4.4% reduction in power consumption. Furthermore, by conducting application benchmarks, we determined that the average speedup ratio across all stages of the tracking process is 3.25. These findings highlight the effectiveness of MEGACORE in improving the efficiency and performance of VSLAM systems, making it a promising solution for real-world implementations in embedded systems.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"15 4\",\"pages\":\"182-185\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10262028/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10262028/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种名为MEGACORE的专用处理器架构,该架构利用矢量技术来提高视觉同步定位和映射(VSLAM)系统的跟踪性能。通过利用矢量处理固有的并行性并结合浮点单元(FPU), MEGACORE在VSLAM跟踪任务中实现了显着的加速。通过仔细的优化,与基线设计相比,我们取得了显著的改进。我们的优化使面积参数降低了14.9%,功耗降低了4.4%。此外,通过执行应用程序基准测试,我们确定跟踪过程所有阶段的平均加速比为3.25。这些发现突出了MEGACORE在提高VSLAM系统的效率和性能方面的有效性,使其成为嵌入式系统中实际实现的有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector-Based Dedicated Processor Architecture for Efficient Tracking in VSLAM Systems
This letter introduces a dedicated processor architecture, called MEGACORE, which leverages vector technology to enhance tracking performance in visual simultaneous localization and mapping (VSLAM) systems. By harnessing the inherent parallelism of vector processing and incorporating a floating point unit (FPU), MEGACORE achieves significant acceleration in the tracking task of VSLAM. Through careful optimizations, we achieved notable improvements compared to the baseline design. Our optimizations resulted in a 14.9% reduction in the area parameter and a 4.4% reduction in power consumption. Furthermore, by conducting application benchmarks, we determined that the average speedup ratio across all stages of the tracking process is 3.25. These findings highlight the effectiveness of MEGACORE in improving the efficiency and performance of VSLAM systems, making it a promising solution for real-world implementations in embedded systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信