Saif Zabarah, Omar Naman, Mohammad A. Salahuddin, Raouf Boutaba, Samer Al-Kiswany
{"title":"检测多机构攻击的方法","authors":"Saif Zabarah, Omar Naman, Mohammad A. Salahuddin, Raouf Boutaba, Samer Al-Kiswany","doi":"10.1007/s12243-023-00993-4","DOIUrl":null,"url":null,"abstract":"<div><p>We present Soteria, a data processing pipeline for detecting multi-institution attacks. Soteria uses a set of machine learning techniques to detect future attacks, predict their future targets, and rank attacks based on their predicted severity. Our evaluation with real data from Canada-wide academic institution networks shows that Soteria can predict future attacks with 95% recall rate, predict the next targets of an attack with 97% recall rate, and detect attacks in the first 20% of their life span. Soteria is deployed in production and is in use by tens of Canadian academic institutions that are part of the CANARIE IDS project.</p></div>","PeriodicalId":50761,"journal":{"name":"Annals of Telecommunications","volume":"79 3-4","pages":"257 - 270"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach for detecting multi-institution attacks\",\"authors\":\"Saif Zabarah, Omar Naman, Mohammad A. Salahuddin, Raouf Boutaba, Samer Al-Kiswany\",\"doi\":\"10.1007/s12243-023-00993-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present Soteria, a data processing pipeline for detecting multi-institution attacks. Soteria uses a set of machine learning techniques to detect future attacks, predict their future targets, and rank attacks based on their predicted severity. Our evaluation with real data from Canada-wide academic institution networks shows that Soteria can predict future attacks with 95% recall rate, predict the next targets of an attack with 97% recall rate, and detect attacks in the first 20% of their life span. Soteria is deployed in production and is in use by tens of Canadian academic institutions that are part of the CANARIE IDS project.</p></div>\",\"PeriodicalId\":50761,\"journal\":{\"name\":\"Annals of Telecommunications\",\"volume\":\"79 3-4\",\"pages\":\"257 - 270\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Telecommunications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12243-023-00993-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Telecommunications","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s12243-023-00993-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
An approach for detecting multi-institution attacks
We present Soteria, a data processing pipeline for detecting multi-institution attacks. Soteria uses a set of machine learning techniques to detect future attacks, predict their future targets, and rank attacks based on their predicted severity. Our evaluation with real data from Canada-wide academic institution networks shows that Soteria can predict future attacks with 95% recall rate, predict the next targets of an attack with 97% recall rate, and detect attacks in the first 20% of their life span. Soteria is deployed in production and is in use by tens of Canadian academic institutions that are part of the CANARIE IDS project.
期刊介绍:
Annals of Telecommunications is an international journal publishing original peer-reviewed papers in the field of telecommunications. It covers all the essential branches of modern telecommunications, ranging from digital communications to communication networks and the internet, to software, protocols and services, uses and economics. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies in computers, communications, content management towards the emergence of the information and knowledge society. As a consequence, the Journal provides a medium for exchanging research results and technological achievements accomplished by the European and international scientific community from academia and industry.