神经形态尖峰神经网络侧信道攻击的实验研究

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Bhanprakash Goswami;Tamoghno Das;Manan Suri
{"title":"神经形态尖峰神经网络侧信道攻击的实验研究","authors":"Bhanprakash Goswami;Tamoghno Das;Manan Suri","doi":"10.1109/LES.2023.3328223","DOIUrl":null,"url":null,"abstract":"This study investigates the reliability of commonly utilized digital spiking neurons and the potential side-channel vulnerabilities in neuromorphic systems that employ them. Through our experiments, we have successfully decoded the parametric information of Izhikevich and leaky integrate-and-fire (LIF) neuron-based spiking neural networks (SNNs) using differential power analysis. Furthermore, we have demonstrated the practical application of extracted information from the 92% accurate pretrained standard spiking convolution neural network classifier on the FashionMNIST dataset. These findings highlight the potential dangers of utilizing internal information for side-channel and denial-of-service attacks, even when using the usual input as the attack vector.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 2","pages":"231-234"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Side-Channel Attacks on Neuromorphic Spiking Neural Networks\",\"authors\":\"Bhanprakash Goswami;Tamoghno Das;Manan Suri\",\"doi\":\"10.1109/LES.2023.3328223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the reliability of commonly utilized digital spiking neurons and the potential side-channel vulnerabilities in neuromorphic systems that employ them. Through our experiments, we have successfully decoded the parametric information of Izhikevich and leaky integrate-and-fire (LIF) neuron-based spiking neural networks (SNNs) using differential power analysis. Furthermore, we have demonstrated the practical application of extracted information from the 92% accurate pretrained standard spiking convolution neural network classifier on the FashionMNIST dataset. These findings highlight the potential dangers of utilizing internal information for side-channel and denial-of-service attacks, even when using the usual input as the attack vector.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 2\",\"pages\":\"231-234\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10298634/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10298634/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了常用数字尖峰神经元的可靠性,以及采用这些神经元的神经形态系统中潜在的侧信道漏洞。通过实验,我们利用差分功率分析法成功地解码了基于 Izhikevich 和泄漏积分发射(LIF)神经元的尖峰神经网络(SNN)的参数信息。此外,我们还在 FashionMNIST 数据集上展示了从预训练的标准尖峰卷积神经网络分类器中提取的信息的实际应用,其准确率高达 92%。这些发现凸显了利用内部信息进行侧信道攻击和拒绝服务攻击的潜在危险,即使使用常规输入作为攻击向量也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of Side-Channel Attacks on Neuromorphic Spiking Neural Networks
This study investigates the reliability of commonly utilized digital spiking neurons and the potential side-channel vulnerabilities in neuromorphic systems that employ them. Through our experiments, we have successfully decoded the parametric information of Izhikevich and leaky integrate-and-fire (LIF) neuron-based spiking neural networks (SNNs) using differential power analysis. Furthermore, we have demonstrated the practical application of extracted information from the 92% accurate pretrained standard spiking convolution neural network classifier on the FashionMNIST dataset. These findings highlight the potential dangers of utilizing internal information for side-channel and denial-of-service attacks, even when using the usual input as the attack vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信