bacon:基于RDF数据立方体词汇表的关联数据集成

Sebastian P. Bayerl, M. Granitzer
{"title":"bacon:基于RDF数据立方体词汇表的关联数据集成","authors":"Sebastian P. Bayerl, M. Granitzer","doi":"10.1145/2797115.2797126","DOIUrl":null,"url":null,"abstract":"Discovering and integrating relevant real-live datasets are essential tasks, when it comes to handling Linked Data. Similar to Data Warehousing approaches, Linked Data can be prepared to enable sophisticated data analysis. The developed open source framework bacon enables interactive and crowed-sourced Data Integration on Linked Data (Linked Data Integration), utilizing the RDF Data Cube Vocabulary and the semantic properties of Linked Open Data. Discovering suitable datasets on-the-fly in local or remote repositories sets up the ensuing integration process. Based on well-known Data Warehousing processes, the semantic nature of the data is taken into account to handle and merge RDF Data Cubes. To do so, structure and content of the cubes must be analyzed and processed. A similarity measure has been developed to find similarly structured cubes. The user is offered a graphical interface, where he can search for suitable cubes and modify their structure based on semantic properties. This process is fostered by a set of automated suggestions to support inexperienced users and also domain experts.","PeriodicalId":386229,"journal":{"name":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"bacon: Linked Data Integration based on the RDF Data Cube Vocabulary\",\"authors\":\"Sebastian P. Bayerl, M. Granitzer\",\"doi\":\"10.1145/2797115.2797126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering and integrating relevant real-live datasets are essential tasks, when it comes to handling Linked Data. Similar to Data Warehousing approaches, Linked Data can be prepared to enable sophisticated data analysis. The developed open source framework bacon enables interactive and crowed-sourced Data Integration on Linked Data (Linked Data Integration), utilizing the RDF Data Cube Vocabulary and the semantic properties of Linked Open Data. Discovering suitable datasets on-the-fly in local or remote repositories sets up the ensuing integration process. Based on well-known Data Warehousing processes, the semantic nature of the data is taken into account to handle and merge RDF Data Cubes. To do so, structure and content of the cubes must be analyzed and processed. A similarity measure has been developed to find similarly structured cubes. The user is offered a graphical interface, where he can search for suitable cubes and modify their structure based on semantic properties. This process is fostered by a set of automated suggestions to support inexperienced users and also domain experts.\",\"PeriodicalId\":386229,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2797115.2797126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2797115.2797126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在处理关联数据时,发现和集成相关的实时数据集是必不可少的任务。与数据仓库方法类似,可以准备关联数据以启用复杂的数据分析。开发的开源框架培根利用RDF数据立方体词汇表和链接开放数据的语义属性,支持在关联数据上进行交互式和众源数据集成(关联数据集成)。在本地或远程存储库中动态发现合适的数据集可以建立随后的集成过程。基于众所周知的数据仓库流程,考虑了数据的语义性质来处理和合并RDF数据立方体。为此,必须分析和处理多维数据集的结构和内容。人们开发了一种相似性度量来寻找结构相似的立方体。为用户提供了一个图形界面,用户可以在其中搜索合适的多维数据集并根据语义属性修改它们的结构。这个过程是由一组自动建议来促进的,以支持没有经验的用户和领域专家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
bacon: Linked Data Integration based on the RDF Data Cube Vocabulary
Discovering and integrating relevant real-live datasets are essential tasks, when it comes to handling Linked Data. Similar to Data Warehousing approaches, Linked Data can be prepared to enable sophisticated data analysis. The developed open source framework bacon enables interactive and crowed-sourced Data Integration on Linked Data (Linked Data Integration), utilizing the RDF Data Cube Vocabulary and the semantic properties of Linked Open Data. Discovering suitable datasets on-the-fly in local or remote repositories sets up the ensuing integration process. Based on well-known Data Warehousing processes, the semantic nature of the data is taken into account to handle and merge RDF Data Cubes. To do so, structure and content of the cubes must be analyzed and processed. A similarity measure has been developed to find similarly structured cubes. The user is offered a graphical interface, where he can search for suitable cubes and modify their structure based on semantic properties. This process is fostered by a set of automated suggestions to support inexperienced users and also domain experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信