无线网络天线倾斜优化的多智能体深度q学习

Tanutsorn Wongphatcharatham, W. Phakphisut, N. Puttarak
{"title":"无线网络天线倾斜优化的多智能体深度q学习","authors":"Tanutsorn Wongphatcharatham, W. Phakphisut, N. Puttarak","doi":"10.1109/ITC-CSCC58803.2023.10212518","DOIUrl":null,"url":null,"abstract":"The configuration of an antenna installed at a base station involves the quality of communication in wireless networks. For example, at each transmitter, the antenna tilt must be optimized such that the desired and undesired receivers obtain the highest and lowest signal strength, respectively. In this work, we propose to use multi-agent deep Q-learning to optimize the antenna tilt. Our channel model includes the three-dimensional antenna gain, the Ericsson path loss model, and the digital elevation model (DEM). Our simulation indicates that multiagant deep Q-learning provides good signal quality.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Agent Deep Q-Learning for Antenna Tilt Optimization in Wireless Networks\",\"authors\":\"Tanutsorn Wongphatcharatham, W. Phakphisut, N. Puttarak\",\"doi\":\"10.1109/ITC-CSCC58803.2023.10212518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The configuration of an antenna installed at a base station involves the quality of communication in wireless networks. For example, at each transmitter, the antenna tilt must be optimized such that the desired and undesired receivers obtain the highest and lowest signal strength, respectively. In this work, we propose to use multi-agent deep Q-learning to optimize the antenna tilt. Our channel model includes the three-dimensional antenna gain, the Ericsson path loss model, and the digital elevation model (DEM). Our simulation indicates that multiagant deep Q-learning provides good signal quality.\",\"PeriodicalId\":220939,\"journal\":{\"name\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC-CSCC58803.2023.10212518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

安装在基站上的天线的配置关系到无线网络的通信质量。例如,在每个发射机,天线倾斜必须优化,以便期望和不希望的接收器分别获得最高和最低的信号强度。在这项工作中,我们提出使用多智能体深度q学习来优化天线倾斜。我们的信道模型包括三维天线增益、爱立信路径损耗模型和数字高程模型(DEM)。我们的仿真表明,多智能体深度q学习提供了良好的信号质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Agent Deep Q-Learning for Antenna Tilt Optimization in Wireless Networks
The configuration of an antenna installed at a base station involves the quality of communication in wireless networks. For example, at each transmitter, the antenna tilt must be optimized such that the desired and undesired receivers obtain the highest and lowest signal strength, respectively. In this work, we propose to use multi-agent deep Q-learning to optimize the antenna tilt. Our channel model includes the three-dimensional antenna gain, the Ericsson path loss model, and the digital elevation model (DEM). Our simulation indicates that multiagant deep Q-learning provides good signal quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信