家庭卷烟消费支出的自适应套索惩罚tobit分位数回归的贝叶斯分析

F. Rahmawati, S. Subanar
{"title":"家庭卷烟消费支出的自适应套索惩罚tobit分位数回归的贝叶斯分析","authors":"F. Rahmawati, S. Subanar","doi":"10.26714/jsunimus.10.2.2022.25-33","DOIUrl":null,"url":null,"abstract":"Tobit Quantile Regression with Adaptive Lasso Penalty is a quantile regression model on censored data that adds Lasso's adaptive penalty to its parameter estimation. The estimation of the regression parameters is solved by Bayesian analysis. Parameters are assumed to follow a certain distribution called the prior distribution. Using the sample information along with the prior distribution, the conditional posterior distribution is searched using the Box-Tiao rule. Computational solutions are solved by the MCMC Gibbs Sampling algorithm. Gibbs Sampling can generate samples based on the conditional posterior distribution of each parameter in order to obtain a posterior joint distribution. Tobit Quantile Regression with Adaptive Lasso Penalty was applied to data on Household Expenditure for Cigarette Consumption in 2011. As a comparison for data analysis, Tobit Quantile Regression was used. The results of data analysis show that the Tobit Quantile Regression model with  Adaptive Lasso Penalty is better than the Tobit Quantile Regression.","PeriodicalId":183562,"journal":{"name":"Jurnal Statistika Universitas Muhammadiyah Semarang","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BAYESIAN ANALYSIS OF TOBIT QUANTILE REGRESSION WITH ADAPTIVE LASSO PENALTY IN HOUSEHOLD EXPENDITURE FOR CIGARETTE CONSUMPTION\",\"authors\":\"F. Rahmawati, S. Subanar\",\"doi\":\"10.26714/jsunimus.10.2.2022.25-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tobit Quantile Regression with Adaptive Lasso Penalty is a quantile regression model on censored data that adds Lasso's adaptive penalty to its parameter estimation. The estimation of the regression parameters is solved by Bayesian analysis. Parameters are assumed to follow a certain distribution called the prior distribution. Using the sample information along with the prior distribution, the conditional posterior distribution is searched using the Box-Tiao rule. Computational solutions are solved by the MCMC Gibbs Sampling algorithm. Gibbs Sampling can generate samples based on the conditional posterior distribution of each parameter in order to obtain a posterior joint distribution. Tobit Quantile Regression with Adaptive Lasso Penalty was applied to data on Household Expenditure for Cigarette Consumption in 2011. As a comparison for data analysis, Tobit Quantile Regression was used. The results of data analysis show that the Tobit Quantile Regression model with  Adaptive Lasso Penalty is better than the Tobit Quantile Regression.\",\"PeriodicalId\":183562,\"journal\":{\"name\":\"Jurnal Statistika Universitas Muhammadiyah Semarang\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Statistika Universitas Muhammadiyah Semarang\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26714/jsunimus.10.2.2022.25-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Statistika Universitas Muhammadiyah Semarang","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26714/jsunimus.10.2.2022.25-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

带自适应Lasso惩罚的Tobit分位数回归模型是在参数估计中加入Lasso自适应惩罚的截尾数据分位数回归模型。回归参数的估计由贝叶斯分析解决。假设参数遵循某种称为先验分布的分布。利用样本信息和先验分布,使用Box-Tiao规则搜索条件后验分布。计算解采用MCMC Gibbs采样算法求解。Gibbs Sampling可以根据各参数的条件后验分布生成样本,从而得到后验联合分布。采用自适应套索惩罚的Tobit分位数回归对2011年家庭卷烟消费支出数据进行了分析。数据分析比较采用Tobit分位数回归。数据分析结果表明,自适应Lasso惩罚的Tobit分位数回归模型优于Tobit分位数回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BAYESIAN ANALYSIS OF TOBIT QUANTILE REGRESSION WITH ADAPTIVE LASSO PENALTY IN HOUSEHOLD EXPENDITURE FOR CIGARETTE CONSUMPTION
Tobit Quantile Regression with Adaptive Lasso Penalty is a quantile regression model on censored data that adds Lasso's adaptive penalty to its parameter estimation. The estimation of the regression parameters is solved by Bayesian analysis. Parameters are assumed to follow a certain distribution called the prior distribution. Using the sample information along with the prior distribution, the conditional posterior distribution is searched using the Box-Tiao rule. Computational solutions are solved by the MCMC Gibbs Sampling algorithm. Gibbs Sampling can generate samples based on the conditional posterior distribution of each parameter in order to obtain a posterior joint distribution. Tobit Quantile Regression with Adaptive Lasso Penalty was applied to data on Household Expenditure for Cigarette Consumption in 2011. As a comparison for data analysis, Tobit Quantile Regression was used. The results of data analysis show that the Tobit Quantile Regression model with  Adaptive Lasso Penalty is better than the Tobit Quantile Regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信