流式分布式源编码的顺序随机分组

S. Draper, Cheng Chang, A. Sahai
{"title":"流式分布式源编码的顺序随机分组","authors":"S. Draper, Cheng Chang, A. Sahai","doi":"10.1109/ISIT.2005.1523572","DOIUrl":null,"url":null,"abstract":"Random binning arguments underlie many results in information theory. In this paper we introduce and analyze a novel type of causal random binning \"sequential\" binning. This binning is used to get streaming Slepian-Wolf codes with an \"anytime\" character. At the decoder, the probability of estimation error on any particular symbol goes to zero exponentially fast with delay. In the non-distributed context, we show equivalent results for fixed-rate streaming entropy coding. Because of space constraints, we present full derivations only for the latter, stating the results for the distributed problem. We give bounds on error exponents for both universal and maximum-likelihood decoders","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Sequential random binning for streaming distributed source coding\",\"authors\":\"S. Draper, Cheng Chang, A. Sahai\",\"doi\":\"10.1109/ISIT.2005.1523572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random binning arguments underlie many results in information theory. In this paper we introduce and analyze a novel type of causal random binning \\\"sequential\\\" binning. This binning is used to get streaming Slepian-Wolf codes with an \\\"anytime\\\" character. At the decoder, the probability of estimation error on any particular symbol goes to zero exponentially fast with delay. In the non-distributed context, we show equivalent results for fixed-rate streaming entropy coding. Because of space constraints, we present full derivations only for the latter, stating the results for the distributed problem. We give bounds on error exponents for both universal and maximum-likelihood decoders\",\"PeriodicalId\":166130,\"journal\":{\"name\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

随机分组论证是信息论中许多结果的基础。本文介绍并分析了一种新型的因果随机分型——序列分型。这个分组用于获得带有“anytime”字符的流化sleep - wolf代码。在解码器处,任意特定符号的估计误差概率随时延呈指数级快速趋近于零。在非分布式环境中,我们展示了固定速率流熵编码的等效结果。由于篇幅的限制,我们只给出了后者的完整推导,说明了分布式问题的结果。我们给出了通用解码器和最大似然解码器的误差指数的界限
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential random binning for streaming distributed source coding
Random binning arguments underlie many results in information theory. In this paper we introduce and analyze a novel type of causal random binning "sequential" binning. This binning is used to get streaming Slepian-Wolf codes with an "anytime" character. At the decoder, the probability of estimation error on any particular symbol goes to zero exponentially fast with delay. In the non-distributed context, we show equivalent results for fixed-rate streaming entropy coding. Because of space constraints, we present full derivations only for the latter, stating the results for the distributed problem. We give bounds on error exponents for both universal and maximum-likelihood decoders
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信