基于ARX-Laguerre解耦多模型的非线性系统辨识

Sameh Adaily, T. Garna, A. Mbarek, H. Messaoud
{"title":"基于ARX-Laguerre解耦多模型的非线性系统辨识","authors":"Sameh Adaily, T. Garna, A. Mbarek, H. Messaoud","doi":"10.1109/ICEESA.2013.6578361","DOIUrl":null,"url":null,"abstract":"This paper proposes a new alternative in the multimodel approach by expanding each ARX sub-model on independent orthonormal Laguerre bases by filtering the process input and output using Laguerre orthonormal functions. The resulting multimodel, entitled ARX-Laguerre decoupled multimodel, ensures the parameter number reduction with a recursive and easy representation. However, such reduction is still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al. [17]. The ARX-Laguerre decoupled multimodel as well as the proposed pole optimization algorithm are illustrated and validated on a numerical simulation.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Identification of nonlinear systems by the new representation ARX-Laguerre decoupled multimodel\",\"authors\":\"Sameh Adaily, T. Garna, A. Mbarek, H. Messaoud\",\"doi\":\"10.1109/ICEESA.2013.6578361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new alternative in the multimodel approach by expanding each ARX sub-model on independent orthonormal Laguerre bases by filtering the process input and output using Laguerre orthonormal functions. The resulting multimodel, entitled ARX-Laguerre decoupled multimodel, ensures the parameter number reduction with a recursive and easy representation. However, such reduction is still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al. [17]. The ARX-Laguerre decoupled multimodel as well as the proposed pole optimization algorithm are illustrated and validated on a numerical simulation.\",\"PeriodicalId\":212631,\"journal\":{\"name\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEESA.2013.6578361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的多模型方法,通过使用Laguerre标准正交函数过滤过程输入和输出,在独立的标准正交Laguerre基上扩展每个ARX子模型。由此产生的多模型,称为ARX-Laguerre解耦多模型,通过递归和简单的表示确保了参数数量的减少。然而,这种减少仍然受到表征每个基的拉盖尔极的最优选择的限制。为此,我们开发了一种极点优化算法,该算法是tangy等人提出的极点优化算法的扩展。通过数值仿真验证了ARX-Laguerre解耦多模型和极点优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of nonlinear systems by the new representation ARX-Laguerre decoupled multimodel
This paper proposes a new alternative in the multimodel approach by expanding each ARX sub-model on independent orthonormal Laguerre bases by filtering the process input and output using Laguerre orthonormal functions. The resulting multimodel, entitled ARX-Laguerre decoupled multimodel, ensures the parameter number reduction with a recursive and easy representation. However, such reduction is still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al. [17]. The ARX-Laguerre decoupled multimodel as well as the proposed pole optimization algorithm are illustrated and validated on a numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信