{"title":"基于哈密顿形式的广义欠驱动机器人系统反演方法","authors":"J. Short, A. Poo, Chow Yin Lai, P. Y. Tao, M. Ang","doi":"10.1109/AIM.2015.7222739","DOIUrl":null,"url":null,"abstract":"A new generalized method of stable model inversion is presented with the aim of providing solutions for the feedforward control of underactuated robots. The area of application is in SISO and MIMO systems within robotics which contain only scleronomous constraints. This generalized restriction is discussed followed by a justification of its sufficiency. The method uses a boundary value problem framework along with Hamiltonian formalism, representing the dynamic equations of motion, to solve for the stable model inversion of a robotic system. The benefits of the method include energy savings, enhanced safety, and robot simplification. An example of the robot feedforward control solution is presented to conclude the work.","PeriodicalId":199432,"journal":{"name":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"2020 42","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A generalized underactuated robot system inversion method using Hamiltonian formalism\",\"authors\":\"J. Short, A. Poo, Chow Yin Lai, P. Y. Tao, M. Ang\",\"doi\":\"10.1109/AIM.2015.7222739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new generalized method of stable model inversion is presented with the aim of providing solutions for the feedforward control of underactuated robots. The area of application is in SISO and MIMO systems within robotics which contain only scleronomous constraints. This generalized restriction is discussed followed by a justification of its sufficiency. The method uses a boundary value problem framework along with Hamiltonian formalism, representing the dynamic equations of motion, to solve for the stable model inversion of a robotic system. The benefits of the method include energy savings, enhanced safety, and robot simplification. An example of the robot feedforward control solution is presented to conclude the work.\",\"PeriodicalId\":199432,\"journal\":{\"name\":\"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)\",\"volume\":\"2020 42\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIM.2015.7222739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2015.7222739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generalized underactuated robot system inversion method using Hamiltonian formalism
A new generalized method of stable model inversion is presented with the aim of providing solutions for the feedforward control of underactuated robots. The area of application is in SISO and MIMO systems within robotics which contain only scleronomous constraints. This generalized restriction is discussed followed by a justification of its sufficiency. The method uses a boundary value problem framework along with Hamiltonian formalism, representing the dynamic equations of motion, to solve for the stable model inversion of a robotic system. The benefits of the method include energy savings, enhanced safety, and robot simplification. An example of the robot feedforward control solution is presented to conclude the work.