{"title":"边缘计算中最小化通信延迟的强化学习","authors":"K. Rajashekar","doi":"10.1109/ICDCS54860.2022.00128","DOIUrl":null,"url":null,"abstract":"For real-time edge computing applications working under stringent deadlines, communication delay between IoT devices and edge devices needs to be minimized. In order to minimize the communication delay between the IoT devices and the edge devices, we need a sophisticated approach for assignment IoT devices to the edge devices. Most of the heuristics solutions previously used to tackle the problem faced issues being solution stuck at local optima and high computational over head. To that end, researchers used reinforcement learning (RL) algorithms to explore the search space to get near optimal solutions. For our work, we consider RL based algorithms and show the preliminary results.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning for Minimizing Communication Delay in Edge Computing\",\"authors\":\"K. Rajashekar\",\"doi\":\"10.1109/ICDCS54860.2022.00128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For real-time edge computing applications working under stringent deadlines, communication delay between IoT devices and edge devices needs to be minimized. In order to minimize the communication delay between the IoT devices and the edge devices, we need a sophisticated approach for assignment IoT devices to the edge devices. Most of the heuristics solutions previously used to tackle the problem faced issues being solution stuck at local optima and high computational over head. To that end, researchers used reinforcement learning (RL) algorithms to explore the search space to get near optimal solutions. For our work, we consider RL based algorithms and show the preliminary results.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reinforcement Learning for Minimizing Communication Delay in Edge Computing
For real-time edge computing applications working under stringent deadlines, communication delay between IoT devices and edge devices needs to be minimized. In order to minimize the communication delay between the IoT devices and the edge devices, we need a sophisticated approach for assignment IoT devices to the edge devices. Most of the heuristics solutions previously used to tackle the problem faced issues being solution stuck at local optima and high computational over head. To that end, researchers used reinforcement learning (RL) algorithms to explore the search space to get near optimal solutions. For our work, we consider RL based algorithms and show the preliminary results.