Takato O. Yoshida, E. Kohno, T. Sakurai, T. Hirano, Seiji Yamamoto, S. Terakawa
{"title":"监测患者光动力治疗过程的模型","authors":"Takato O. Yoshida, E. Kohno, T. Sakurai, T. Hirano, Seiji Yamamoto, S. Terakawa","doi":"10.1117/12.639221","DOIUrl":null,"url":null,"abstract":"The photodynamic therapy (PDT) on tumors is quite effective and widely applied but usually carried out without an immediate evaluation of results. We measured the tumor fluorescence in mice with a fiber probe connected to a linear array spectral analyzer (PMA-11, Hamamatsu Photonics). The spectrum showed a transient change in fluorescence color from red to green during Photofrin-mediated PDT. In order to examine the source of green fluorescence, the mitochondria were accessed under a Nipkow disk-scanning confocal microscope in the HeLa cell in culture after labeling them with a red fluorescent protein (DsRed1-mito) and staining the cell with Photofrin (Axcan Scandipharm). Changes in fluorescence color from red to green were observed in the area of mitochondria upon their swelling during irradiation. This finding in vitro provided clear evidence that the change in fluorescence color from red to green observed in vivo was due to the mitochondrial destruction associated with the cell-death by PDT. This technique of spectral monitoring in tumor may be useful for detection of the cell-death signal during PDT in patients.","PeriodicalId":325950,"journal":{"name":"Shanghai International Conference on Laser Medicine and Surgery","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model for monitoring the process of photodynamic therapy in patients\",\"authors\":\"Takato O. Yoshida, E. Kohno, T. Sakurai, T. Hirano, Seiji Yamamoto, S. Terakawa\",\"doi\":\"10.1117/12.639221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photodynamic therapy (PDT) on tumors is quite effective and widely applied but usually carried out without an immediate evaluation of results. We measured the tumor fluorescence in mice with a fiber probe connected to a linear array spectral analyzer (PMA-11, Hamamatsu Photonics). The spectrum showed a transient change in fluorescence color from red to green during Photofrin-mediated PDT. In order to examine the source of green fluorescence, the mitochondria were accessed under a Nipkow disk-scanning confocal microscope in the HeLa cell in culture after labeling them with a red fluorescent protein (DsRed1-mito) and staining the cell with Photofrin (Axcan Scandipharm). Changes in fluorescence color from red to green were observed in the area of mitochondria upon their swelling during irradiation. This finding in vitro provided clear evidence that the change in fluorescence color from red to green observed in vivo was due to the mitochondrial destruction associated with the cell-death by PDT. This technique of spectral monitoring in tumor may be useful for detection of the cell-death signal during PDT in patients.\",\"PeriodicalId\":325950,\"journal\":{\"name\":\"Shanghai International Conference on Laser Medicine and Surgery\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shanghai International Conference on Laser Medicine and Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.639221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shanghai International Conference on Laser Medicine and Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.639221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model for monitoring the process of photodynamic therapy in patients
The photodynamic therapy (PDT) on tumors is quite effective and widely applied but usually carried out without an immediate evaluation of results. We measured the tumor fluorescence in mice with a fiber probe connected to a linear array spectral analyzer (PMA-11, Hamamatsu Photonics). The spectrum showed a transient change in fluorescence color from red to green during Photofrin-mediated PDT. In order to examine the source of green fluorescence, the mitochondria were accessed under a Nipkow disk-scanning confocal microscope in the HeLa cell in culture after labeling them with a red fluorescent protein (DsRed1-mito) and staining the cell with Photofrin (Axcan Scandipharm). Changes in fluorescence color from red to green were observed in the area of mitochondria upon their swelling during irradiation. This finding in vitro provided clear evidence that the change in fluorescence color from red to green observed in vivo was due to the mitochondrial destruction associated with the cell-death by PDT. This technique of spectral monitoring in tumor may be useful for detection of the cell-death signal during PDT in patients.