Tiktok用户情感分析精度与Naïve贝叶斯和支持向量机的比较

{"title":"Tiktok用户情感分析精度与Naïve贝叶斯和支持向量机的比较","authors":"","doi":"10.30534/ijatcse/2023/031212023","DOIUrl":null,"url":null,"abstract":"This study aims to compare the accuracy of the sentiment analysis of TikTok application users using the Naïve Bayes algorithm and the Support Vector Machine. The data set in this study comes from comments from Tiktok users on Twitter social media. Comparison of the accuracy of sentiment analysis in this study was carried out through three tests. The first test was conducted on 848 tweets, the second test used 957 tweet data, and the third test used 1,925 tweet data. Testing is done by dividing the data by 70% for training data and 30% for test data. The results showed that the accuracy of the Naive algorithm was 89.35% and 94.08% using the Support Vector Machine algorithm.","PeriodicalId":129636,"journal":{"name":"International Journal of Advanced Trends in Computer Science and Engineering","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Tiktok User Sentiment Analysis Accuracy with Naïve Bayes and Support Vector Machine\",\"authors\":\"\",\"doi\":\"10.30534/ijatcse/2023/031212023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to compare the accuracy of the sentiment analysis of TikTok application users using the Naïve Bayes algorithm and the Support Vector Machine. The data set in this study comes from comments from Tiktok users on Twitter social media. Comparison of the accuracy of sentiment analysis in this study was carried out through three tests. The first test was conducted on 848 tweets, the second test used 957 tweet data, and the third test used 1,925 tweet data. Testing is done by dividing the data by 70% for training data and 30% for test data. The results showed that the accuracy of the Naive algorithm was 89.35% and 94.08% using the Support Vector Machine algorithm.\",\"PeriodicalId\":129636,\"journal\":{\"name\":\"International Journal of Advanced Trends in Computer Science and Engineering\",\"volume\":\"260 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Trends in Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30534/ijatcse/2023/031212023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Trends in Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijatcse/2023/031212023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在比较Naïve贝叶斯算法和支持向量机对TikTok应用用户情感分析的准确性。本研究的数据集来自抖音用户在Twitter社交媒体上的评论。通过三个测试来比较本研究中情绪分析的准确性。第一次测试使用了848条推文,第二次测试使用了957条推文数据,第三次测试使用了1925条推文数据。测试通过将数据除以70%的训练数据和30%的测试数据来完成。结果表明,Naive算法的准确率为89.35%,支持向量机算法的准确率为94.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Tiktok User Sentiment Analysis Accuracy with Naïve Bayes and Support Vector Machine
This study aims to compare the accuracy of the sentiment analysis of TikTok application users using the Naïve Bayes algorithm and the Support Vector Machine. The data set in this study comes from comments from Tiktok users on Twitter social media. Comparison of the accuracy of sentiment analysis in this study was carried out through three tests. The first test was conducted on 848 tweets, the second test used 957 tweet data, and the third test used 1,925 tweet data. Testing is done by dividing the data by 70% for training data and 30% for test data. The results showed that the accuracy of the Naive algorithm was 89.35% and 94.08% using the Support Vector Machine algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信