基于系统级综合的预测安全滤波器

Antoine P. Leeman, Johannes Köhler, S. Bennani, M. Zeilinger
{"title":"基于系统级综合的预测安全滤波器","authors":"Antoine P. Leeman, Johannes Köhler, S. Bennani, M. Zeilinger","doi":"10.3929/ethz-b-000615512","DOIUrl":null,"url":null,"abstract":"Safety filters provide modular techniques to augment potentially unsafe control inputs (e.g. from learning-based controllers or humans) with safety guarantees in the form of constraint satisfaction. In this paper, we present an improved model predictive safety filter (MPSF) formulation, which incorporates system level synthesis techniques in the design. The resulting SL-MPSF scheme ensures safety for linear systems subject to bounded disturbances in an enlarged safe set. It requires less severe and frequent modifications of potentially unsafe control inputs compared to existing MPSF formulations to certify safety. In addition, we propose an explicit variant of the SL-MPSF formulation, which maintains scalability, and reduces the required online computational effort - the main drawback of the MPSF. The benefits of the proposed system level safety filter formulations compared to state-of-the-art MPSF formulations are demonstrated using a numerical example.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predictive safety filter using system level synthesis\",\"authors\":\"Antoine P. Leeman, Johannes Köhler, S. Bennani, M. Zeilinger\",\"doi\":\"10.3929/ethz-b-000615512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety filters provide modular techniques to augment potentially unsafe control inputs (e.g. from learning-based controllers or humans) with safety guarantees in the form of constraint satisfaction. In this paper, we present an improved model predictive safety filter (MPSF) formulation, which incorporates system level synthesis techniques in the design. The resulting SL-MPSF scheme ensures safety for linear systems subject to bounded disturbances in an enlarged safe set. It requires less severe and frequent modifications of potentially unsafe control inputs compared to existing MPSF formulations to certify safety. In addition, we propose an explicit variant of the SL-MPSF formulation, which maintains scalability, and reduces the required online computational effort - the main drawback of the MPSF. The benefits of the proposed system level safety filter formulations compared to state-of-the-art MPSF formulations are demonstrated using a numerical example.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3929/ethz-b-000615512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ethz-b-000615512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

安全过滤器提供模块化技术,以约束满足的形式提供安全保证,以增加潜在的不安全控制输入(例如,来自基于学习的控制器或人类)。在本文中,我们提出了一种改进的模型预测安全滤波器(MPSF)配方,该配方在设计中结合了系统级综合技术。所得到的SL-MPSF格式在一个扩大的安全集中保证了受有界扰动的线性系统的安全性。与现有的MPSF配方相比,它不需要对潜在不安全的控制输入进行严格和频繁的修改,以证明安全性。此外,我们提出了SL-MPSF公式的显式变体,它保持了可扩展性,并减少了所需的在线计算工作量-MPSF的主要缺点。与最先进的MPSF配方相比,所提出的系统级安全过滤器配方的好处是用数值例子来证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive safety filter using system level synthesis
Safety filters provide modular techniques to augment potentially unsafe control inputs (e.g. from learning-based controllers or humans) with safety guarantees in the form of constraint satisfaction. In this paper, we present an improved model predictive safety filter (MPSF) formulation, which incorporates system level synthesis techniques in the design. The resulting SL-MPSF scheme ensures safety for linear systems subject to bounded disturbances in an enlarged safe set. It requires less severe and frequent modifications of potentially unsafe control inputs compared to existing MPSF formulations to certify safety. In addition, we propose an explicit variant of the SL-MPSF formulation, which maintains scalability, and reduces the required online computational effort - the main drawback of the MPSF. The benefits of the proposed system level safety filter formulations compared to state-of-the-art MPSF formulations are demonstrated using a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信