整数有和无谓词实加法的理论

A. Bès, C. Choffrut
{"title":"整数有和无谓词实加法的理论","authors":"A. Bès, C. Choffrut","doi":"10.23638/LMCS-17(2:18)2021","DOIUrl":null,"url":null,"abstract":"We show that it is decidable whether or not a relation on the reals definable in the structure $\\langle \\mathbb{R}, +,<, \\mathbb{Z} \\rangle$ can be defined in the structure $\\langle \\mathbb{R}, +,<, 1 \\rangle$. This result is achieved by obtaining a topological characterization of $\\langle \\mathbb{R}, +,<, 1 \\rangle$-definable relations in the family of $\\langle \\mathbb{R}, +,<, \\mathbb{Z} \\rangle$-definable relations and then by following Muchnik's approach of showing that the characterization of the relation $X$ can be expressed in the logic of $\\langle \\mathbb{R}, +,<,1, X \\rangle$. The above characterization allows us to prove that there is no intermediate structure between $\\langle \\mathbb{R}, +,<, \\mathbb{Z} \\rangle$ and $\\langle \\mathbb{R}, +,<, 1 \\rangle$. We also show that a $\\langle \\mathbb{R}, +,<, \\mathbb{Z} \\rangle$-definable relation is $\\langle \\mathbb{R}, +,<, 1 \\rangle$-definable if and only if its intersection with every $\\langle \\mathbb{R}, +,<, 1 \\rangle$-definable line is $\\langle \\mathbb{R}, +,<, 1 \\rangle$-definable. This gives a noneffective but simple characterization of $\\langle \\mathbb{R}, +,<, 1 \\rangle$-definable relations.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Theories of real addition with and without a predicate for integers\",\"authors\":\"A. Bès, C. Choffrut\",\"doi\":\"10.23638/LMCS-17(2:18)2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that it is decidable whether or not a relation on the reals definable in the structure $\\\\langle \\\\mathbb{R}, +,<, \\\\mathbb{Z} \\\\rangle$ can be defined in the structure $\\\\langle \\\\mathbb{R}, +,<, 1 \\\\rangle$. This result is achieved by obtaining a topological characterization of $\\\\langle \\\\mathbb{R}, +,<, 1 \\\\rangle$-definable relations in the family of $\\\\langle \\\\mathbb{R}, +,<, \\\\mathbb{Z} \\\\rangle$-definable relations and then by following Muchnik's approach of showing that the characterization of the relation $X$ can be expressed in the logic of $\\\\langle \\\\mathbb{R}, +,<,1, X \\\\rangle$. The above characterization allows us to prove that there is no intermediate structure between $\\\\langle \\\\mathbb{R}, +,<, \\\\mathbb{Z} \\\\rangle$ and $\\\\langle \\\\mathbb{R}, +,<, 1 \\\\rangle$. We also show that a $\\\\langle \\\\mathbb{R}, +,<, \\\\mathbb{Z} \\\\rangle$-definable relation is $\\\\langle \\\\mathbb{R}, +,<, 1 \\\\rangle$-definable if and only if its intersection with every $\\\\langle \\\\mathbb{R}, +,<, 1 \\\\rangle$-definable line is $\\\\langle \\\\mathbb{R}, +,<, 1 \\\\rangle$-definable. This gives a noneffective but simple characterization of $\\\\langle \\\\mathbb{R}, +,<, 1 \\\\rangle$-definable relations.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23638/LMCS-17(2:18)2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/LMCS-17(2:18)2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了在$\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$结构中可定义的实数上的关系是否可以在$\langle \mathbb{R}, +,<, 1 \rangle$结构中定义是可决定的。这个结果是通过获得$\langle \mathbb{R}, +,<,1 \rangle$-可定义关系在$\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-可定义关系的拓扑表征,然后通过遵循Muchnik的方法来证明关系$X$的表征可以用$\langle \mathbb{R}, +,<,1, X \rangle$的逻辑来表示得到的。上述表征使我们能够证明在$\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$和$\langle \mathbb{R}, +,<, 1 \rangle$之间不存在中间结构。我们还证明了一个$\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-可定义的关系是$\langle \mathbb{R}, +,<, 1 \rangle$-可定义的当且仅当它与每一条$\langle \mathbb{R}, +,<, 1 \rangle$-可定义的直线的交是$\langle \mathbb{R}, +,<, 1 \rangle$-可定义的。这给出了一个无效但简单的$\ rangle \mathbb{R}, +,<, 1 \rangle$-可定义关系的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theories of real addition with and without a predicate for integers
We show that it is decidable whether or not a relation on the reals definable in the structure $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$ can be defined in the structure $\langle \mathbb{R}, +,<, 1 \rangle$. This result is achieved by obtaining a topological characterization of $\langle \mathbb{R}, +,<, 1 \rangle$-definable relations in the family of $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-definable relations and then by following Muchnik's approach of showing that the characterization of the relation $X$ can be expressed in the logic of $\langle \mathbb{R}, +,<,1, X \rangle$. The above characterization allows us to prove that there is no intermediate structure between $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$ and $\langle \mathbb{R}, +,<, 1 \rangle$. We also show that a $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-definable relation is $\langle \mathbb{R}, +,<, 1 \rangle$-definable if and only if its intersection with every $\langle \mathbb{R}, +,<, 1 \rangle$-definable line is $\langle \mathbb{R}, +,<, 1 \rangle$-definable. This gives a noneffective but simple characterization of $\langle \mathbb{R}, +,<, 1 \rangle$-definable relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信