2015年RecSys挑战的内部解决方案

Nadav Cohen, Adi Gerzi, David Ben-Shimon, Bracha Shapira, L. Rokach, Michael Friedmann
{"title":"2015年RecSys挑战的内部解决方案","authors":"Nadav Cohen, Adi Gerzi, David Ben-Shimon, Bracha Shapira, L. Rokach, Michael Friedmann","doi":"10.1145/2813448.2813519","DOIUrl":null,"url":null,"abstract":"RecSys Challenge 2015 is about predicting the items a user will buy in a given click session. We describe the in-house solution to the challenge as guided by the YOOCHOOSE team. The presented solution achieved 14th place in the challenge's final leaderboard with a score of 51,932 points, while the winner obtained 63,102 points. We suggest two simple and easy to reconstruct approaches for obtaining a prediction in each session. In the first approach we suggest one classifier to determine whether each item in the session will be bought. In the second approach we suggest a two level classification model in which the first level determines whether the session is going to end with a purchase or not, and if it ends with a purchase, the second level classification determines the items that are going to be purchased.","PeriodicalId":324873,"journal":{"name":"Proceedings of the 2015 International ACM Recommender Systems Challenge","volume":"115 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"In-House Solution for the RecSys Challenge 2015\",\"authors\":\"Nadav Cohen, Adi Gerzi, David Ben-Shimon, Bracha Shapira, L. Rokach, Michael Friedmann\",\"doi\":\"10.1145/2813448.2813519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RecSys Challenge 2015 is about predicting the items a user will buy in a given click session. We describe the in-house solution to the challenge as guided by the YOOCHOOSE team. The presented solution achieved 14th place in the challenge's final leaderboard with a score of 51,932 points, while the winner obtained 63,102 points. We suggest two simple and easy to reconstruct approaches for obtaining a prediction in each session. In the first approach we suggest one classifier to determine whether each item in the session will be bought. In the second approach we suggest a two level classification model in which the first level determines whether the session is going to end with a purchase or not, and if it ends with a purchase, the second level classification determines the items that are going to be purchased.\",\"PeriodicalId\":324873,\"journal\":{\"name\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"volume\":\"115 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2813448.2813519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813448.2813519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

RecSys挑战2015是关于预测用户在给定的点击会话中将购买的物品。在YOOCHOOSE团队的指导下,我们描述了应对挑战的内部解决方案。该解决方案以51,932分的得分在挑战赛最终排行榜上排名第14位,而获胜者则获得了63,102分。我们提出了两种简单且易于重构的方法来获得每个会话的预测。在第一种方法中,我们建议使用一个分类器来确定会话中的每个项目是否会被购买。在第二种方法中,我们建议采用两级分类模型,其中第一级确定会话是否以购买结束,如果会话以购买结束,则第二级分类确定将要购买的物品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-House Solution for the RecSys Challenge 2015
RecSys Challenge 2015 is about predicting the items a user will buy in a given click session. We describe the in-house solution to the challenge as guided by the YOOCHOOSE team. The presented solution achieved 14th place in the challenge's final leaderboard with a score of 51,932 points, while the winner obtained 63,102 points. We suggest two simple and easy to reconstruct approaches for obtaining a prediction in each session. In the first approach we suggest one classifier to determine whether each item in the session will be bought. In the second approach we suggest a two level classification model in which the first level determines whether the session is going to end with a purchase or not, and if it ends with a purchase, the second level classification determines the items that are going to be purchased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信