Nadav Cohen, Adi Gerzi, David Ben-Shimon, Bracha Shapira, L. Rokach, Michael Friedmann
{"title":"2015年RecSys挑战的内部解决方案","authors":"Nadav Cohen, Adi Gerzi, David Ben-Shimon, Bracha Shapira, L. Rokach, Michael Friedmann","doi":"10.1145/2813448.2813519","DOIUrl":null,"url":null,"abstract":"RecSys Challenge 2015 is about predicting the items a user will buy in a given click session. We describe the in-house solution to the challenge as guided by the YOOCHOOSE team. The presented solution achieved 14th place in the challenge's final leaderboard with a score of 51,932 points, while the winner obtained 63,102 points. We suggest two simple and easy to reconstruct approaches for obtaining a prediction in each session. In the first approach we suggest one classifier to determine whether each item in the session will be bought. In the second approach we suggest a two level classification model in which the first level determines whether the session is going to end with a purchase or not, and if it ends with a purchase, the second level classification determines the items that are going to be purchased.","PeriodicalId":324873,"journal":{"name":"Proceedings of the 2015 International ACM Recommender Systems Challenge","volume":"115 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"In-House Solution for the RecSys Challenge 2015\",\"authors\":\"Nadav Cohen, Adi Gerzi, David Ben-Shimon, Bracha Shapira, L. Rokach, Michael Friedmann\",\"doi\":\"10.1145/2813448.2813519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RecSys Challenge 2015 is about predicting the items a user will buy in a given click session. We describe the in-house solution to the challenge as guided by the YOOCHOOSE team. The presented solution achieved 14th place in the challenge's final leaderboard with a score of 51,932 points, while the winner obtained 63,102 points. We suggest two simple and easy to reconstruct approaches for obtaining a prediction in each session. In the first approach we suggest one classifier to determine whether each item in the session will be bought. In the second approach we suggest a two level classification model in which the first level determines whether the session is going to end with a purchase or not, and if it ends with a purchase, the second level classification determines the items that are going to be purchased.\",\"PeriodicalId\":324873,\"journal\":{\"name\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"volume\":\"115 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2813448.2813519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813448.2813519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RecSys Challenge 2015 is about predicting the items a user will buy in a given click session. We describe the in-house solution to the challenge as guided by the YOOCHOOSE team. The presented solution achieved 14th place in the challenge's final leaderboard with a score of 51,932 points, while the winner obtained 63,102 points. We suggest two simple and easy to reconstruct approaches for obtaining a prediction in each session. In the first approach we suggest one classifier to determine whether each item in the session will be bought. In the second approach we suggest a two level classification model in which the first level determines whether the session is going to end with a purchase or not, and if it ends with a purchase, the second level classification determines the items that are going to be purchased.