基于regex的信息安全链接图抽象细化

Abhiram Kothapalli, Robert Mitchell
{"title":"基于regex的信息安全链接图抽象细化","authors":"Abhiram Kothapalli, Robert Mitchell","doi":"10.1145/3180445.3180446","DOIUrl":null,"url":null,"abstract":"Linkographs have been used in the past to model behavioral patterns for creative professionals. Recently, linkographs have been applied to the context of cyber security to study the behavioral patterns of remote attackers of cyber systems. We propose a human supervised algorithm that refines abstractions to be used for linkographic analysis of common attack patterns. The refinement algorithm attempts to maximize the accuracy of computer-derived linkographs by optimally merging and splitting abstraction classes, represented as regular expressions (regexes). We first describe an algorithm to select and perform a globally optimal merge of two abstraction classes. We then describe a counterpart algorithm to select and split a single abstraction class into two separate ones. We cast a regex as a conjunction of disjunctions and refine it by adding and removing conjunctive and disjunctive elements. We also show how to use the Stoer-Wagner algorithm, normally used for least cost cuts of graphs, to create two optimal subsets of a set of elements.","PeriodicalId":355181,"journal":{"name":"Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regex-Based Linkography Abstraction Refinement for Information Security\",\"authors\":\"Abhiram Kothapalli, Robert Mitchell\",\"doi\":\"10.1145/3180445.3180446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linkographs have been used in the past to model behavioral patterns for creative professionals. Recently, linkographs have been applied to the context of cyber security to study the behavioral patterns of remote attackers of cyber systems. We propose a human supervised algorithm that refines abstractions to be used for linkographic analysis of common attack patterns. The refinement algorithm attempts to maximize the accuracy of computer-derived linkographs by optimally merging and splitting abstraction classes, represented as regular expressions (regexes). We first describe an algorithm to select and perform a globally optimal merge of two abstraction classes. We then describe a counterpart algorithm to select and split a single abstraction class into two separate ones. We cast a regex as a conjunction of disjunctions and refine it by adding and removing conjunctive and disjunctive elements. We also show how to use the Stoer-Wagner algorithm, normally used for least cost cuts of graphs, to create two optimal subsets of a set of elements.\",\"PeriodicalId\":355181,\"journal\":{\"name\":\"Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180445.3180446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180445.3180446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去,链接图已经被用来模拟创造性专业人士的行为模式。近年来,链接图已被应用于网络安全领域,用于研究网络系统远程攻击者的行为模式。我们提出了一种人类监督的算法,该算法将抽象提炼用于常见攻击模式的链接图分析。细化算法试图通过最优地合并和拆分抽象类(表示为正则表达式(regexes))来最大化计算机派生的链接图的准确性。我们首先描述了一种算法来选择和执行两个抽象类的全局最优合并。然后,我们描述了一个对应的算法来选择一个抽象类并将其拆分为两个独立的抽象类。我们将正则表达式转换为析取的合取,并通过添加和删除合取和析取元素来改进它。我们还展示了如何使用Stoer-Wagner算法(通常用于图的最小成本削减)来创建一组元素的两个最优子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regex-Based Linkography Abstraction Refinement for Information Security
Linkographs have been used in the past to model behavioral patterns for creative professionals. Recently, linkographs have been applied to the context of cyber security to study the behavioral patterns of remote attackers of cyber systems. We propose a human supervised algorithm that refines abstractions to be used for linkographic analysis of common attack patterns. The refinement algorithm attempts to maximize the accuracy of computer-derived linkographs by optimally merging and splitting abstraction classes, represented as regular expressions (regexes). We first describe an algorithm to select and perform a globally optimal merge of two abstraction classes. We then describe a counterpart algorithm to select and split a single abstraction class into two separate ones. We cast a regex as a conjunction of disjunctions and refine it by adding and removing conjunctive and disjunctive elements. We also show how to use the Stoer-Wagner algorithm, normally used for least cost cuts of graphs, to create two optimal subsets of a set of elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信