结合混合选择排序和桶排序算法优化数字排序

Risqi Pradana Aryanto, Agung Nilogiri, A. Wardoyo
{"title":"结合混合选择排序和桶排序算法优化数字排序","authors":"Risqi Pradana Aryanto, Agung Nilogiri, A. Wardoyo","doi":"10.29408/edumatic.v7i1.12358","DOIUrl":null,"url":null,"abstract":"Sorting algorithms are crucial in data processing, particularly for integer data. However, as the number of integers to be sorted increases, the sorting algorithm takes longer to complete, especially for algorithms with O(n2) complexity. This article discusses optimizing integer data sorting by combining the Selection Sort Hybrid and Bucket Sort algorithms. The study aims to test the performance of the Selection Sort Hybrid and Bucket Sort algorithms and compare them with other data sorting algorithms. The research method used is experimental quantitative research, using randomly generated data using Python. The data were tested using the Combined Selection Sort Hybrid with Bucket Sort algorithm, Selection Sort Hybrid, Quick Sort, and Merge Sort. Data analysis was done by calculating the execution time of each sorting algorithm. The results show that the Selection Sort Hybrid and Bucket Sort algorithms are faster than other sorting algorithms in testing with large and complex integer data. Therefore, combining Selection Sort Hybrid and Bucket Sort algorithms can improve the efficiency and speed of sorting complex integer data.","PeriodicalId":314771,"journal":{"name":"Edumatic: Jurnal Pendidikan Informatika","volume":"692 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimasi Pengurutan Data Bilangan dengan Menggabungkan Algoritma Selection Sort Hybrid dan Bucket Sort\",\"authors\":\"Risqi Pradana Aryanto, Agung Nilogiri, A. Wardoyo\",\"doi\":\"10.29408/edumatic.v7i1.12358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorting algorithms are crucial in data processing, particularly for integer data. However, as the number of integers to be sorted increases, the sorting algorithm takes longer to complete, especially for algorithms with O(n2) complexity. This article discusses optimizing integer data sorting by combining the Selection Sort Hybrid and Bucket Sort algorithms. The study aims to test the performance of the Selection Sort Hybrid and Bucket Sort algorithms and compare them with other data sorting algorithms. The research method used is experimental quantitative research, using randomly generated data using Python. The data were tested using the Combined Selection Sort Hybrid with Bucket Sort algorithm, Selection Sort Hybrid, Quick Sort, and Merge Sort. Data analysis was done by calculating the execution time of each sorting algorithm. The results show that the Selection Sort Hybrid and Bucket Sort algorithms are faster than other sorting algorithms in testing with large and complex integer data. Therefore, combining Selection Sort Hybrid and Bucket Sort algorithms can improve the efficiency and speed of sorting complex integer data.\",\"PeriodicalId\":314771,\"journal\":{\"name\":\"Edumatic: Jurnal Pendidikan Informatika\",\"volume\":\"692 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Edumatic: Jurnal Pendidikan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29408/edumatic.v7i1.12358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edumatic: Jurnal Pendidikan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/edumatic.v7i1.12358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

排序算法在数据处理中是至关重要的,特别是对于整数数据。但是,随着需要排序的整数数量的增加,排序算法需要更长的时间来完成,特别是对于复杂度为O(n2)的算法。本文讨论通过组合选择排序混合算法和桶排序算法来优化整数数据排序。本研究旨在测试选择排序混合算法和桶排序算法的性能,并将其与其他数据排序算法进行比较。使用的研究方法是实验定量研究,使用Python随机生成的数据。使用组合选择排序混合桶排序算法、选择排序混合算法、快速排序和归并排序对数据进行测试。通过计算各排序算法的执行时间进行数据分析。结果表明,选择排序混合算法和桶排序算法在大型复杂整数数据测试中比其他排序算法速度更快。因此,将选择排序混合算法与桶排序算法相结合,可以提高复杂整数数据排序的效率和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimasi Pengurutan Data Bilangan dengan Menggabungkan Algoritma Selection Sort Hybrid dan Bucket Sort
Sorting algorithms are crucial in data processing, particularly for integer data. However, as the number of integers to be sorted increases, the sorting algorithm takes longer to complete, especially for algorithms with O(n2) complexity. This article discusses optimizing integer data sorting by combining the Selection Sort Hybrid and Bucket Sort algorithms. The study aims to test the performance of the Selection Sort Hybrid and Bucket Sort algorithms and compare them with other data sorting algorithms. The research method used is experimental quantitative research, using randomly generated data using Python. The data were tested using the Combined Selection Sort Hybrid with Bucket Sort algorithm, Selection Sort Hybrid, Quick Sort, and Merge Sort. Data analysis was done by calculating the execution time of each sorting algorithm. The results show that the Selection Sort Hybrid and Bucket Sort algorithms are faster than other sorting algorithms in testing with large and complex integer data. Therefore, combining Selection Sort Hybrid and Bucket Sort algorithms can improve the efficiency and speed of sorting complex integer data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信