一种改进的BiSeNetV2网络图像分割方法

Peng Liu, Huan Zhang, Gaochao Yang, Qing Wang
{"title":"一种改进的BiSeNetV2网络图像分割方法","authors":"Peng Liu, Huan Zhang, Gaochao Yang, Qing Wang","doi":"10.1145/3484274.3484277","DOIUrl":null,"url":null,"abstract":"The task of image semantic segmentation is to annotate and segment the semantic information of different types of objects in the image, and predict the category and location information of objects. The difficulty lies in obtaining enough semantic information while retaining enough space information. In order to solve this problem, this paper proposes an improved BiSeNetV2 network. The main idea is to add DenseASPP module to detail branch to obtain larger receptive field, and add efficient channel attention (ECA) module to detail and semantic branch to optimize the feature graph extracted in each stage. so as to further improve the network acquisition. Experimental results show that the proposed algorithm improves the MIoU index by 1.62% on cityscapes dataset, and achieves better performance than BiSeNetV2 network.","PeriodicalId":143540,"journal":{"name":"Proceedings of the 4th International Conference on Control and Computer Vision","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Improved Image Segmentation Method of BiSeNetV2 Network\",\"authors\":\"Peng Liu, Huan Zhang, Gaochao Yang, Qing Wang\",\"doi\":\"10.1145/3484274.3484277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of image semantic segmentation is to annotate and segment the semantic information of different types of objects in the image, and predict the category and location information of objects. The difficulty lies in obtaining enough semantic information while retaining enough space information. In order to solve this problem, this paper proposes an improved BiSeNetV2 network. The main idea is to add DenseASPP module to detail branch to obtain larger receptive field, and add efficient channel attention (ECA) module to detail and semantic branch to optimize the feature graph extracted in each stage. so as to further improve the network acquisition. Experimental results show that the proposed algorithm improves the MIoU index by 1.62% on cityscapes dataset, and achieves better performance than BiSeNetV2 network.\",\"PeriodicalId\":143540,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Control and Computer Vision\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Control and Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3484274.3484277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Control and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3484274.3484277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像语义分割的任务是对图像中不同类型物体的语义信息进行标注和分割,并预测物体的类别和位置信息。难点在于获取足够的语义信息的同时保留足够的空间信息。为了解决这一问题,本文提出了一种改进的BiSeNetV2网络。其主要思想是在细节分支中加入DenseASPP模块,获得更大的接受野;在细节分支和语义分支中加入高效通道注意(ECA)模块,对各阶段提取的特征图进行优化。从而进一步完善网络采集。实验结果表明,该算法在城市景观数据集上的MIoU指数提高了1.62%,取得了比BiSeNetV2网络更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Image Segmentation Method of BiSeNetV2 Network
The task of image semantic segmentation is to annotate and segment the semantic information of different types of objects in the image, and predict the category and location information of objects. The difficulty lies in obtaining enough semantic information while retaining enough space information. In order to solve this problem, this paper proposes an improved BiSeNetV2 network. The main idea is to add DenseASPP module to detail branch to obtain larger receptive field, and add efficient channel attention (ECA) module to detail and semantic branch to optimize the feature graph extracted in each stage. so as to further improve the network acquisition. Experimental results show that the proposed algorithm improves the MIoU index by 1.62% on cityscapes dataset, and achieves better performance than BiSeNetV2 network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信