基于SPWVD-ViT模型的脑电精神分裂症检测

Mesut Seker, M. S. Özerdem
{"title":"基于SPWVD-ViT模型的脑电精神分裂症检测","authors":"Mesut Seker, M. S. Özerdem","doi":"10.36222/ejt.1192140","DOIUrl":null,"url":null,"abstract":"Schizophrenia is a typical neurological disease that affects patients’ mental state, and daily behaviours. Combining image generation techniques with effective machine learning algorithms may accelerate treatment process, and possible early alert systems prevents diseases from reaching out crucial phase. The purpose of current study is to develop an automated EEG based schizophrenia detection with the Vision Transformer (ViT) model using Smoothed Pseudo Wigner Ville Distribution (SPWVD) time-frequency input images. EEG recordings from 35 schizophrenia (sch) and 35 healthy conditions (hc) are analyzed. We have used 5-fold cross validation for evaluation and testing of the method. Classification task is carried out as subject-independent and subject-dependent method. We reached out overall accuracy of 87% for subject-independent and 100% for subject-dependent approach for binary classification. While ViT has ben extensively used in Natural Language Processing (NLP) field, dividing input images within a sequence of embedded image patches via. transformer encoder is a practical way for medical image learning and developing diagnostic tools. SPWVD-ViT model is recommended as a disease detection tool not only for schizophrenia but other neurological symptoms.","PeriodicalId":413929,"journal":{"name":"European Journal of Technic","volume":"26 Pt 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EEG based Schizophrenia Detection using SPWVD-ViT Model\",\"authors\":\"Mesut Seker, M. S. Özerdem\",\"doi\":\"10.36222/ejt.1192140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schizophrenia is a typical neurological disease that affects patients’ mental state, and daily behaviours. Combining image generation techniques with effective machine learning algorithms may accelerate treatment process, and possible early alert systems prevents diseases from reaching out crucial phase. The purpose of current study is to develop an automated EEG based schizophrenia detection with the Vision Transformer (ViT) model using Smoothed Pseudo Wigner Ville Distribution (SPWVD) time-frequency input images. EEG recordings from 35 schizophrenia (sch) and 35 healthy conditions (hc) are analyzed. We have used 5-fold cross validation for evaluation and testing of the method. Classification task is carried out as subject-independent and subject-dependent method. We reached out overall accuracy of 87% for subject-independent and 100% for subject-dependent approach for binary classification. While ViT has ben extensively used in Natural Language Processing (NLP) field, dividing input images within a sequence of embedded image patches via. transformer encoder is a practical way for medical image learning and developing diagnostic tools. SPWVD-ViT model is recommended as a disease detection tool not only for schizophrenia but other neurological symptoms.\",\"PeriodicalId\":413929,\"journal\":{\"name\":\"European Journal of Technic\",\"volume\":\"26 Pt 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Technic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36222/ejt.1192140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Technic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36222/ejt.1192140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

精神分裂症是一种典型的影响患者精神状态和日常行为的神经系统疾病。将图像生成技术与有效的机器学习算法相结合可以加速治疗过程,并且可能的早期预警系统可以防止疾病进入关键阶段。本研究的目的是利用平滑伪维格纳维尔分布(SPWVD)时频输入图像,建立基于视觉变换(ViT)模型的脑电精神分裂症自动检测方法。分析了35例精神分裂症(sch)和35例健康状态(hc)的脑电图记录。我们使用了5倍交叉验证来评估和测试该方法。分类任务采用主体独立和主体依赖两种方法进行。我们达到了主体独立的总体准确率为87%,主体依赖的二元分类方法的总体准确率为100%。而ViT在自然语言处理(NLP)领域中得到了广泛的应用,它通过对嵌入图像补丁序列中的输入图像进行分割。变压器编码器是医学图像学习和诊断工具开发的一种实用方法。SPWVD-ViT模型不仅可以作为精神分裂症的疾病检测工具,还可以作为其他神经系统症状的疾病检测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG based Schizophrenia Detection using SPWVD-ViT Model
Schizophrenia is a typical neurological disease that affects patients’ mental state, and daily behaviours. Combining image generation techniques with effective machine learning algorithms may accelerate treatment process, and possible early alert systems prevents diseases from reaching out crucial phase. The purpose of current study is to develop an automated EEG based schizophrenia detection with the Vision Transformer (ViT) model using Smoothed Pseudo Wigner Ville Distribution (SPWVD) time-frequency input images. EEG recordings from 35 schizophrenia (sch) and 35 healthy conditions (hc) are analyzed. We have used 5-fold cross validation for evaluation and testing of the method. Classification task is carried out as subject-independent and subject-dependent method. We reached out overall accuracy of 87% for subject-independent and 100% for subject-dependent approach for binary classification. While ViT has ben extensively used in Natural Language Processing (NLP) field, dividing input images within a sequence of embedded image patches via. transformer encoder is a practical way for medical image learning and developing diagnostic tools. SPWVD-ViT model is recommended as a disease detection tool not only for schizophrenia but other neurological symptoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信