压缩子空间聚类:一个案例研究

Xianghui Mao, Yuantao Gu
{"title":"压缩子空间聚类:一个案例研究","authors":"Xianghui Mao, Yuantao Gu","doi":"10.1109/GlobalSIP.2014.7032158","DOIUrl":null,"url":null,"abstract":"Subspace clustering possesses a wide range of applications, including network data analysis, image segmentation, and medical image processing, etc. Aimed at reducing the computational complexity of subspace clustering performed on high-dimensional data, we propose a compressed subspace clustering approach by random projection. From the view of subspace principal angles, we analyze the subspace affinity change brought by compression, and provide an estimate of compressed subspace affinity when the embedded subspaces share a certain number of intersected dimensions with all other dimensions orthogonal pairwisely. In such condition, a lower bound on compressed dimensionality is also theoretically proved in this paper. Our results show that the raw data can be compressed to very few measurements yet will remain high subspace separability. Numerical simulations validate the above theoretical results.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Compressed subspace clustering: A case study\",\"authors\":\"Xianghui Mao, Yuantao Gu\",\"doi\":\"10.1109/GlobalSIP.2014.7032158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace clustering possesses a wide range of applications, including network data analysis, image segmentation, and medical image processing, etc. Aimed at reducing the computational complexity of subspace clustering performed on high-dimensional data, we propose a compressed subspace clustering approach by random projection. From the view of subspace principal angles, we analyze the subspace affinity change brought by compression, and provide an estimate of compressed subspace affinity when the embedded subspaces share a certain number of intersected dimensions with all other dimensions orthogonal pairwisely. In such condition, a lower bound on compressed dimensionality is also theoretically proved in this paper. Our results show that the raw data can be compressed to very few measurements yet will remain high subspace separability. Numerical simulations validate the above theoretical results.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

子空间聚类具有广泛的应用,包括网络数据分析、图像分割、医学图像处理等。为了降低对高维数据进行子空间聚类的计算复杂度,提出了一种基于随机投影的压缩子空间聚类方法。从子空间主角的角度分析了压缩所带来的子空间亲和度的变化,给出了当嵌入子空间与所有其他维度具有一定数量的正交维相交时压缩子空间亲和度的估计。在这种情况下,本文还从理论上证明了压缩维数的下界。我们的结果表明,原始数据可以被压缩到很少的测量值,但仍将保持高的子空间可分性。数值模拟验证了上述理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed subspace clustering: A case study
Subspace clustering possesses a wide range of applications, including network data analysis, image segmentation, and medical image processing, etc. Aimed at reducing the computational complexity of subspace clustering performed on high-dimensional data, we propose a compressed subspace clustering approach by random projection. From the view of subspace principal angles, we analyze the subspace affinity change brought by compression, and provide an estimate of compressed subspace affinity when the embedded subspaces share a certain number of intersected dimensions with all other dimensions orthogonal pairwisely. In such condition, a lower bound on compressed dimensionality is also theoretically proved in this paper. Our results show that the raw data can be compressed to very few measurements yet will remain high subspace separability. Numerical simulations validate the above theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信