{"title":"基于生态系统机制的游戏平衡","authors":"Wen Xia, Bhojan Anand","doi":"10.1109/SAPIENCE.2016.7684145","DOIUrl":null,"url":null,"abstract":"To adapt game difficulty upon game character's strength, Dynamic Difficulty Adjustment (DDA) and some other learning strategies have been applied in commercial game designs. However, most of the existing approaches could not ensure diversity in results, and rarely attempted to coordinate content generation and behaviour control together. This paper suggests a solution that is based on multi-level swarm model and ecosystem mechanism, in order to provide a more flexible way of game balance control.","PeriodicalId":340137,"journal":{"name":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Game balancing with ecosystem mechanism\",\"authors\":\"Wen Xia, Bhojan Anand\",\"doi\":\"10.1109/SAPIENCE.2016.7684145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To adapt game difficulty upon game character's strength, Dynamic Difficulty Adjustment (DDA) and some other learning strategies have been applied in commercial game designs. However, most of the existing approaches could not ensure diversity in results, and rarely attempted to coordinate content generation and behaviour control together. This paper suggests a solution that is based on multi-level swarm model and ecosystem mechanism, in order to provide a more flexible way of game balance control.\",\"PeriodicalId\":340137,\"journal\":{\"name\":\"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAPIENCE.2016.7684145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIENCE.2016.7684145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
To adapt game difficulty upon game character's strength, Dynamic Difficulty Adjustment (DDA) and some other learning strategies have been applied in commercial game designs. However, most of the existing approaches could not ensure diversity in results, and rarely attempted to coordinate content generation and behaviour control together. This paper suggests a solution that is based on multi-level swarm model and ecosystem mechanism, in order to provide a more flexible way of game balance control.