{"title":"有限分枝Sierpinski地毯的阻力缩放和随机行走尺寸","authors":"C. Schulzky, A. Franz, K. Hoffmann","doi":"10.1145/377604.377608","DOIUrl":null,"url":null,"abstract":"We present a new algorithm to calculate the random walk dimensionof finitely ramified Sierpinski carpets. The fractal structure isinterpreted as a resistor network for which the resistance scalingexponent is calculated using Mathematica. A fractal form of theEinstein relation, which connects diffusion with conductivity, isused to give a numerical value for the random walk dimension.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Resistance scaling and random walk dimensions for finitely ramified Sierpinski carpets\",\"authors\":\"C. Schulzky, A. Franz, K. Hoffmann\",\"doi\":\"10.1145/377604.377608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new algorithm to calculate the random walk dimensionof finitely ramified Sierpinski carpets. The fractal structure isinterpreted as a resistor network for which the resistance scalingexponent is calculated using Mathematica. A fractal form of theEinstein relation, which connects diffusion with conductivity, isused to give a numerical value for the random walk dimension.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/377604.377608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/377604.377608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resistance scaling and random walk dimensions for finitely ramified Sierpinski carpets
We present a new algorithm to calculate the random walk dimensionof finitely ramified Sierpinski carpets. The fractal structure isinterpreted as a resistor network for which the resistance scalingexponent is calculated using Mathematica. A fractal form of theEinstein relation, which connects diffusion with conductivity, isused to give a numerical value for the random walk dimension.