功率感知混合RAM-CAM重命名机制,用于快速恢复

S. Petit, R. Ubal, J. Sahuquillo, P. López
{"title":"功率感知混合RAM-CAM重命名机制,用于快速恢复","authors":"S. Petit, R. Ubal, J. Sahuquillo, P. López","doi":"10.1109/ICCD.2009.5413160","DOIUrl":null,"url":null,"abstract":"Modern superscalar processors implement register renaming by using either RAM or CAM tables. The design of these structures should address their access time and misprediction recovery penalty. While direct-mapped RAMs provide faster access times, CAMs are more appropriate to avoid recovery penalties. Although they are more complex and slower, CAMs usually match the processor cycle in current designs. However, they do not scale with the number of physical registers and the pipeline width. In this paper we present a new hybrid RAM-CAM register renaming scheme, which combines the best of both approaches. In a steady state, a RAM provides the current mappings quickly; on mispeculation, a low-complexity CAM enables immediate recovery and further register renaming. Compared to an ideal CAM in a 4-way state-of-the-art superscalar microprocessor, and for almost the same performance (1% slowdown) and area (95% of the ideal CAM size), the proposed scheme consumes about 90% less dynamic energy.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A power-aware hybrid RAM-CAM renaming mechanism for fast recovery\",\"authors\":\"S. Petit, R. Ubal, J. Sahuquillo, P. López\",\"doi\":\"10.1109/ICCD.2009.5413160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern superscalar processors implement register renaming by using either RAM or CAM tables. The design of these structures should address their access time and misprediction recovery penalty. While direct-mapped RAMs provide faster access times, CAMs are more appropriate to avoid recovery penalties. Although they are more complex and slower, CAMs usually match the processor cycle in current designs. However, they do not scale with the number of physical registers and the pipeline width. In this paper we present a new hybrid RAM-CAM register renaming scheme, which combines the best of both approaches. In a steady state, a RAM provides the current mappings quickly; on mispeculation, a low-complexity CAM enables immediate recovery and further register renaming. Compared to an ideal CAM in a 4-way state-of-the-art superscalar microprocessor, and for almost the same performance (1% slowdown) and area (95% of the ideal CAM size), the proposed scheme consumes about 90% less dynamic energy.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

现代超标量处理器通过使用RAM表或CAM表实现寄存器重命名。这些结构的设计应该解决它们的访问时间和错误预测的恢复惩罚。虽然直接映射的ram提供更快的访问时间,但cam更适合避免恢复损失。虽然它们更复杂和更慢,但cam通常与当前设计中的处理器周期相匹配。然而,它们不随物理寄存器的数量和管道宽度而缩放。在本文中,我们提出了一种新的混合RAM-CAM寄存器重命名方案,它结合了这两种方法的优点。在稳定状态下,RAM快速提供当前映射;对于错误的猜测,低复杂性的CAM可以立即恢复并进一步注册重命名。与最先进的4路标量微处理器中的理想CAM相比,在几乎相同的性能(1%的减速)和面积(理想CAM尺寸的95%)下,所提出的方案消耗的动态能量减少了约90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A power-aware hybrid RAM-CAM renaming mechanism for fast recovery
Modern superscalar processors implement register renaming by using either RAM or CAM tables. The design of these structures should address their access time and misprediction recovery penalty. While direct-mapped RAMs provide faster access times, CAMs are more appropriate to avoid recovery penalties. Although they are more complex and slower, CAMs usually match the processor cycle in current designs. However, they do not scale with the number of physical registers and the pipeline width. In this paper we present a new hybrid RAM-CAM register renaming scheme, which combines the best of both approaches. In a steady state, a RAM provides the current mappings quickly; on mispeculation, a low-complexity CAM enables immediate recovery and further register renaming. Compared to an ideal CAM in a 4-way state-of-the-art superscalar microprocessor, and for almost the same performance (1% slowdown) and area (95% of the ideal CAM size), the proposed scheme consumes about 90% less dynamic energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信