使用差分方法提高预测精度——基于中国沪深300股票指数的实证分析 Using Difference Method to Improve the Prediction Accuracy—An Empirical Study Based on China Shanghai and Shenzhen 300 Stock Index

阎可佳
{"title":"使用差分方法提高预测精度——基于中国沪深300股票指数的实证分析 Using Difference Method to Improve the Prediction Accuracy—An Empirical Study Based on China Shanghai and Shenzhen 300 Stock Index","authors":"阎可佳","doi":"10.12677/FIN.2018.81001","DOIUrl":null,"url":null,"abstract":"当AR、ARIMA、ARMA、MA模型被用来进行时间序列未来值的预测时,由于误差项很容易被忽略掉,所以预测精度受到很大的影响。为了提高预测的精度,本文提出使用差分方法(DF)来处理自相关模型(AR)的误差项。通过对中国沪深300指数(Hushen300)进行实证研究发现:第一,AR-DF模型比单纯AR模型大大提高了HUSHEN收益指数实际值与预测值之间的相关系数;第二,AR-DF模型所得到的误差值比单纯AR模型要小很多;第三,在滞后阶数达到700时,AR-DF模型对于股票收益指数涨跌趋势的命中率比单纯AR模型提高了25.30个百分点,从50.99%提高到了62.65%。 When prediction models such as AR, ARIMA, ARMA, and MA are usually used to forecast the future values of a time series, because the residual values are easily ignored, the prediction accuracy has been influenced a lot. For improving the prediction accuracy, this paper suggests use difference method (DF) to deal with the residual item of autoregressive model (AR). Based on the China Shanghai and Shenzhen 300 Stock Index (Hushen300), the empirical study has found: First, the AR-DF model can result in higher correlation between the real value of HUSHEN return index and its prediction value than pure AR model; second, the average residual value of AR-DF model is quite smaller than the pure AR model; Third, the hit ratio of AR-DF model has increased more than 25.30 percent points than pure AR model, which can increase from 50.99% to 62.65% when the lag order is up to 700.","PeriodicalId":251115,"journal":{"name":"The Finance","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"使用差分方法提高预测精度——基于中国沪深300股票指数的实证分析 Using Difference Method to Improve the Prediction Accuracy—An Empirical Study Based on China Shanghai and Shenzhen 300 Stock Index\",\"authors\":\"阎可佳\",\"doi\":\"10.12677/FIN.2018.81001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"当AR、ARIMA、ARMA、MA模型被用来进行时间序列未来值的预测时,由于误差项很容易被忽略掉,所以预测精度受到很大的影响。为了提高预测的精度,本文提出使用差分方法(DF)来处理自相关模型(AR)的误差项。通过对中国沪深300指数(Hushen300)进行实证研究发现:第一,AR-DF模型比单纯AR模型大大提高了HUSHEN收益指数实际值与预测值之间的相关系数;第二,AR-DF模型所得到的误差值比单纯AR模型要小很多;第三,在滞后阶数达到700时,AR-DF模型对于股票收益指数涨跌趋势的命中率比单纯AR模型提高了25.30个百分点,从50.99%提高到了62.65%。 When prediction models such as AR, ARIMA, ARMA, and MA are usually used to forecast the future values of a time series, because the residual values are easily ignored, the prediction accuracy has been influenced a lot. For improving the prediction accuracy, this paper suggests use difference method (DF) to deal with the residual item of autoregressive model (AR). Based on the China Shanghai and Shenzhen 300 Stock Index (Hushen300), the empirical study has found: First, the AR-DF model can result in higher correlation between the real value of HUSHEN return index and its prediction value than pure AR model; second, the average residual value of AR-DF model is quite smaller than the pure AR model; Third, the hit ratio of AR-DF model has increased more than 25.30 percent points than pure AR model, which can increase from 50.99% to 62.65% when the lag order is up to 700.\",\"PeriodicalId\":251115,\"journal\":{\"name\":\"The Finance\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12677/FIN.2018.81001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12677/FIN.2018.81001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当AR、ARIMA、ARMA、MA模型被用来进行时间序列未来值的预测时,由于误差项很容易被忽略掉,所以预测精度受到很大的影响。为了提高预测的精度,本文提出使用差分方法(DF)来处理自相关模型(AR)的误差项。通过对中国沪深300指数(Hushen300)进行实证研究发现:第一,AR-DF模型比单纯AR模型大大提高了HUSHEN收益指数实际值与预测值之间的相关系数;第二,AR-DF模型所得到的误差值比单纯AR模型要小很多;第三,在滞后阶数达到700时,AR-DF模型对于股票收益指数涨跌趋势的命中率比单纯AR模型提高了25.30个百分点,从50.99%提高到了62.65%。 When prediction models such as AR, ARIMA, ARMA, and MA are usually used to forecast the future values of a time series, because the residual values are easily ignored, the prediction accuracy has been influenced a lot. For improving the prediction accuracy, this paper suggests use difference method (DF) to deal with the residual item of autoregressive model (AR). Based on the China Shanghai and Shenzhen 300 Stock Index (Hushen300), the empirical study has found: First, the AR-DF model can result in higher correlation between the real value of HUSHEN return index and its prediction value than pure AR model; second, the average residual value of AR-DF model is quite smaller than the pure AR model; Third, the hit ratio of AR-DF model has increased more than 25.30 percent points than pure AR model, which can increase from 50.99% to 62.65% when the lag order is up to 700.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
使用差分方法提高预测精度——基于中国沪深300股票指数的实证分析 Using Difference Method to Improve the Prediction Accuracy—An Empirical Study Based on China Shanghai and Shenzhen 300 Stock Index
当AR、ARIMA、ARMA、MA模型被用来进行时间序列未来值的预测时,由于误差项很容易被忽略掉,所以预测精度受到很大的影响。为了提高预测的精度,本文提出使用差分方法(DF)来处理自相关模型(AR)的误差项。通过对中国沪深300指数(Hushen300)进行实证研究发现:第一,AR-DF模型比单纯AR模型大大提高了HUSHEN收益指数实际值与预测值之间的相关系数;第二,AR-DF模型所得到的误差值比单纯AR模型要小很多;第三,在滞后阶数达到700时,AR-DF模型对于股票收益指数涨跌趋势的命中率比单纯AR模型提高了25.30个百分点,从50.99%提高到了62.65%。 When prediction models such as AR, ARIMA, ARMA, and MA are usually used to forecast the future values of a time series, because the residual values are easily ignored, the prediction accuracy has been influenced a lot. For improving the prediction accuracy, this paper suggests use difference method (DF) to deal with the residual item of autoregressive model (AR). Based on the China Shanghai and Shenzhen 300 Stock Index (Hushen300), the empirical study has found: First, the AR-DF model can result in higher correlation between the real value of HUSHEN return index and its prediction value than pure AR model; second, the average residual value of AR-DF model is quite smaller than the pure AR model; Third, the hit ratio of AR-DF model has increased more than 25.30 percent points than pure AR model, which can increase from 50.99% to 62.65% when the lag order is up to 700.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信