用图形处理单元计算多个累积成本曲面

G. Trunfio, G. Sirakoulis
{"title":"用图形处理单元计算多个累积成本曲面","authors":"G. Trunfio, G. Sirakoulis","doi":"10.1109/PDP.2016.76","DOIUrl":null,"url":null,"abstract":"Accumulated cost surfaces (ACSs) are a tool for spatial modelling used in a number of fields. Some relevant applications, especially in the areas of multi-criteria evaluation and spatial optimization, require the availability of several ACSs on the same raster, which may result in a significant computational cost. In this paper, we discuss some techniques available in the literature for accelerating the ACS computation using graphics processing units (GPUs) and CUDA. Also, we illustrate in details a new CUDA algorithm suitable for the computation of multiple ACSs. Moreover, we present some preliminary results on a test case, including an experimental comparison against a fast sequential implementation running on a CPU.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computing Multiple Accumulated Cost Surfaces with Graphics Processing Units\",\"authors\":\"G. Trunfio, G. Sirakoulis\",\"doi\":\"10.1109/PDP.2016.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accumulated cost surfaces (ACSs) are a tool for spatial modelling used in a number of fields. Some relevant applications, especially in the areas of multi-criteria evaluation and spatial optimization, require the availability of several ACSs on the same raster, which may result in a significant computational cost. In this paper, we discuss some techniques available in the literature for accelerating the ACS computation using graphics processing units (GPUs) and CUDA. Also, we illustrate in details a new CUDA algorithm suitable for the computation of multiple ACSs. Moreover, we present some preliminary results on a test case, including an experimental comparison against a fast sequential implementation running on a CPU.\",\"PeriodicalId\":192273,\"journal\":{\"name\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2016.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

累积成本面(ACSs)是一种用于空间建模的工具,用于许多领域。一些相关的应用,特别是在多准则评估和空间优化领域,需要在同一栅格上使用多个ACSs,这可能会导致大量的计算成本。在本文中,我们讨论了文献中可用的一些技术,用于使用图形处理单元(gpu)和CUDA加速ACS计算。此外,我们还详细说明了一种适用于多个ACSs计算的新的CUDA算法。此外,我们给出了一个测试用例的一些初步结果,包括与在CPU上运行的快速顺序实现的实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Multiple Accumulated Cost Surfaces with Graphics Processing Units
Accumulated cost surfaces (ACSs) are a tool for spatial modelling used in a number of fields. Some relevant applications, especially in the areas of multi-criteria evaluation and spatial optimization, require the availability of several ACSs on the same raster, which may result in a significant computational cost. In this paper, we discuss some techniques available in the literature for accelerating the ACS computation using graphics processing units (GPUs) and CUDA. Also, we illustrate in details a new CUDA algorithm suitable for the computation of multiple ACSs. Moreover, we present some preliminary results on a test case, including an experimental comparison against a fast sequential implementation running on a CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信