基于人工神经网络的注水策略优化

J. Bruyelle, D. Guérillot
{"title":"基于人工神经网络的注水策略优化","authors":"J. Bruyelle, D. Guérillot","doi":"10.2118/196643-ms","DOIUrl":null,"url":null,"abstract":"\n Waterflooding is the main technic to recover hydrocarbons in reservoirs. For a given set of wells (injectors and producers), the choice of injection/production parameters such as pressures, flow rates, and locations of these boundary conditions have a significant impact on the operating life of the wells. As a large number of combinations of these parameters are possible, one of the critical decision to make is to identify an optimal set of these parameters. Using the reservoir simulator directly to evaluate the impact of these sets being unrealistic considering the required number of simulations, a common approach consists of using response surfaces to approximate the reservoir simulator outputs. Several techniques involving proxies model (e.g., kriging, polynomial, and artificial neural network) have been suggested to replace the reservoir simulations. This paper focalizes on the application of artificial neural networks (ANN) as it is commonly admitted that the ANNs are the most efficient one due to their universal approximation capacity, i.e., capacity to reproduce any continuous function. This paper presents a complete workflow to optimize well parameters under waterflooding using an artificial neural network as a proxy model. The proposed methodology allows evaluating different production configurations that maximize the NPV according to a given risk. The optimized solutions can be analyzed with the efficient frontier plot and the Sharpe ratios. An application of the workflow to the Brugge field is presented in order to optimize the waterflooding strategy.","PeriodicalId":354509,"journal":{"name":"Day 3 Thu, September 19, 2019","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimization of Waterflooding Strategy Using Artificial Neural Networks\",\"authors\":\"J. Bruyelle, D. Guérillot\",\"doi\":\"10.2118/196643-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Waterflooding is the main technic to recover hydrocarbons in reservoirs. For a given set of wells (injectors and producers), the choice of injection/production parameters such as pressures, flow rates, and locations of these boundary conditions have a significant impact on the operating life of the wells. As a large number of combinations of these parameters are possible, one of the critical decision to make is to identify an optimal set of these parameters. Using the reservoir simulator directly to evaluate the impact of these sets being unrealistic considering the required number of simulations, a common approach consists of using response surfaces to approximate the reservoir simulator outputs. Several techniques involving proxies model (e.g., kriging, polynomial, and artificial neural network) have been suggested to replace the reservoir simulations. This paper focalizes on the application of artificial neural networks (ANN) as it is commonly admitted that the ANNs are the most efficient one due to their universal approximation capacity, i.e., capacity to reproduce any continuous function. This paper presents a complete workflow to optimize well parameters under waterflooding using an artificial neural network as a proxy model. The proposed methodology allows evaluating different production configurations that maximize the NPV according to a given risk. The optimized solutions can be analyzed with the efficient frontier plot and the Sharpe ratios. An application of the workflow to the Brugge field is presented in order to optimize the waterflooding strategy.\",\"PeriodicalId\":354509,\"journal\":{\"name\":\"Day 3 Thu, September 19, 2019\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 19, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196643-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196643-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

水驱是油藏采油的主要技术。对于给定的一组井(注水井和生产水井),注入/生产参数的选择,如压力、流速和这些边界条件的位置,对井的使用寿命有重大影响。由于这些参数可能有大量的组合,因此需要做出的关键决策之一是确定这些参数的最优集合。考虑到所需的模拟次数,直接使用油藏模拟器来评估这些集合的影响是不现实的,一种常用的方法包括使用响应面来近似油藏模拟器的输出。提出了几种涉及代理模型的技术(如克里格、多项式和人工神经网络)来代替油藏模拟。本文主要讨论人工神经网络(ANN)的应用,因为人们普遍认为人工神经网络是最有效的网络,因为它具有普遍的近似能力,即重现任何连续函数的能力。本文提出了一套利用人工神经网络作为代理模型来优化水驱井参数的完整工作流程。所提出的方法允许根据给定的风险评估不同的生产配置,从而最大化NPV。利用有效边界图和夏普比对优化解进行了分析。为了优化注水策略,将该工作流程应用于布鲁日油田。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Waterflooding Strategy Using Artificial Neural Networks
Waterflooding is the main technic to recover hydrocarbons in reservoirs. For a given set of wells (injectors and producers), the choice of injection/production parameters such as pressures, flow rates, and locations of these boundary conditions have a significant impact on the operating life of the wells. As a large number of combinations of these parameters are possible, one of the critical decision to make is to identify an optimal set of these parameters. Using the reservoir simulator directly to evaluate the impact of these sets being unrealistic considering the required number of simulations, a common approach consists of using response surfaces to approximate the reservoir simulator outputs. Several techniques involving proxies model (e.g., kriging, polynomial, and artificial neural network) have been suggested to replace the reservoir simulations. This paper focalizes on the application of artificial neural networks (ANN) as it is commonly admitted that the ANNs are the most efficient one due to their universal approximation capacity, i.e., capacity to reproduce any continuous function. This paper presents a complete workflow to optimize well parameters under waterflooding using an artificial neural network as a proxy model. The proposed methodology allows evaluating different production configurations that maximize the NPV according to a given risk. The optimized solutions can be analyzed with the efficient frontier plot and the Sharpe ratios. An application of the workflow to the Brugge field is presented in order to optimize the waterflooding strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信