用机器学习方法模拟泡塔反应器中甲苯的氧化反应

Raihan Tayeb, Yuwen Zhang
{"title":"用机器学习方法模拟泡塔反应器中甲苯的氧化反应","authors":"Raihan Tayeb, Yuwen Zhang","doi":"10.1115/imece2022-94564","DOIUrl":null,"url":null,"abstract":"\n A feed forward machine-learning (ML) model is applied to study bubble induced turbulence and bubble mass transfer in a bubble column reactor. Using direct numerical simulation data for forced turbulence, bubble deformations and flow velocities are predicted. To predict mass transfer, ML sub-grid scale (SGS) modeling technique is introduced for the concentration of reactants and products undergoing parallel competitive reactions in the oxidation of toluene. The ML model replaces the iterative approach associated with the use of analytical profiles for previous SGS models for correcting concentration profiles in boundary layers. The present model, thus, offers a significant performance bonus as well as the flexibility to extend to more complex scenarios due to its data-driven nature.","PeriodicalId":292222,"journal":{"name":"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning Approach to Modeling Oxidation of Toluene in a Bubble Column Reactor\",\"authors\":\"Raihan Tayeb, Yuwen Zhang\",\"doi\":\"10.1115/imece2022-94564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A feed forward machine-learning (ML) model is applied to study bubble induced turbulence and bubble mass transfer in a bubble column reactor. Using direct numerical simulation data for forced turbulence, bubble deformations and flow velocities are predicted. To predict mass transfer, ML sub-grid scale (SGS) modeling technique is introduced for the concentration of reactants and products undergoing parallel competitive reactions in the oxidation of toluene. The ML model replaces the iterative approach associated with the use of analytical profiles for previous SGS models for correcting concentration profiles in boundary layers. The present model, thus, offers a significant performance bonus as well as the flexibility to extend to more complex scenarios due to its data-driven nature.\",\"PeriodicalId\":292222,\"journal\":{\"name\":\"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-94564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-94564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应用前馈机器学习模型研究了气泡塔反应器中的气泡诱导湍流和气泡传质问题。利用强迫湍流的直接数值模拟数据,对气泡变形和流速进行了预测。为了预测传质,引入ML亚网格尺度(SGS)建模技术,对甲苯氧化过程中进行平行竞争反应的反应物和生成物的浓度进行模拟。ML模型取代了与使用先前SGS模型的分析剖面相关的迭代方法,用于校正边界层中的浓度剖面。因此,目前的模型提供了显著的性能奖励,并且由于其数据驱动的性质,可以灵活地扩展到更复杂的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine-Learning Approach to Modeling Oxidation of Toluene in a Bubble Column Reactor
A feed forward machine-learning (ML) model is applied to study bubble induced turbulence and bubble mass transfer in a bubble column reactor. Using direct numerical simulation data for forced turbulence, bubble deformations and flow velocities are predicted. To predict mass transfer, ML sub-grid scale (SGS) modeling technique is introduced for the concentration of reactants and products undergoing parallel competitive reactions in the oxidation of toluene. The ML model replaces the iterative approach associated with the use of analytical profiles for previous SGS models for correcting concentration profiles in boundary layers. The present model, thus, offers a significant performance bonus as well as the flexibility to extend to more complex scenarios due to its data-driven nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信