类型理论的模块化构造

F. Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, Franccois Thir'e
{"title":"类型理论的模块化构造","authors":"F. Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, Franccois Thir'e","doi":"10.46298/lmcs-19(1:12)2023","DOIUrl":null,"url":null,"abstract":"The lambda-Pi-calculus modulo theory is a logical framework in which many\ntype systems can be expressed as theories. We present such a theory, the theory\nU, where proofs of several logical systems can be expressed. Moreover, we\nidentify a sub-theory of U corresponding to each of these systems, and prove\nthat, when a proof in U uses only symbols of a sub-theory, then it is a proof\nin that sub-theory.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A modular construction of type theories\",\"authors\":\"F. Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, Franccois Thir'e\",\"doi\":\"10.46298/lmcs-19(1:12)2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lambda-Pi-calculus modulo theory is a logical framework in which many\\ntype systems can be expressed as theories. We present such a theory, the theory\\nU, where proofs of several logical systems can be expressed. Moreover, we\\nidentify a sub-theory of U corresponding to each of these systems, and prove\\nthat, when a proof in U uses only symbols of a sub-theory, then it is a proof\\nin that sub-theory.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-19(1:12)2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(1:12)2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

微积分模理论是一个逻辑框架,在这个逻辑框架中,许多类型系统可以被表示为理论。我们提出了这样一个理论,即可以表示若干逻辑系统的证明的理论。此外,我们确定了对应于这些系统的U的子理论,并证明,当U中的证明仅使用子理论的符号时,则它是该子理论的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modular construction of type theories
The lambda-Pi-calculus modulo theory is a logical framework in which many type systems can be expressed as theories. We present such a theory, the theory U, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory of U corresponding to each of these systems, and prove that, when a proof in U uses only symbols of a sub-theory, then it is a proof in that sub-theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信