TFD阈值法在估计脑电信号分量的数量和优势,如果使用短期rsamnyi熵

J. Lerga, N. Saulig, Rebeka Lerga, Ivan Štajduhar
{"title":"TFD阈值法在估计脑电信号分量的数量和优势,如果使用短期rsamnyi熵","authors":"J. Lerga, N. Saulig, Rebeka Lerga, Ivan Štajduhar","doi":"10.1109/ISPA.2017.8073573","DOIUrl":null,"url":null,"abstract":"Time-frequency (TF) based EEG signal analysis using the local or short-term Rényi entropy often requires low-energy cross-terms and noise suppression prior to the estimation of the local number of components and the dominant component instantaneous frequency (IF). This can be easily accomplished by thresholding in the TF domain with the preset TF threshold value, often chosen empirically. The paper investigates the sensitivity of the method based on the local Rényi entropy to the chosen threshold value. The study was performed on real-life left and right hand movements EEG signals. As shown in the paper, the number of the EEG components extracted using the short-term Rényi entropy is highly sensitive to the chosen TF threshold value, unlike the dominant IF which was shown to be highly robust to TF thresholding. Hence, characterization of the EEG signals using the short-term Rényi entropy should include both detecting the number of EEG components and the dominant component IF estimation.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"TFD thresholding in estimating the number of EEG components and the dominant if using the short-term rényi entropy\",\"authors\":\"J. Lerga, N. Saulig, Rebeka Lerga, Ivan Štajduhar\",\"doi\":\"10.1109/ISPA.2017.8073573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-frequency (TF) based EEG signal analysis using the local or short-term Rényi entropy often requires low-energy cross-terms and noise suppression prior to the estimation of the local number of components and the dominant component instantaneous frequency (IF). This can be easily accomplished by thresholding in the TF domain with the preset TF threshold value, often chosen empirically. The paper investigates the sensitivity of the method based on the local Rényi entropy to the chosen threshold value. The study was performed on real-life left and right hand movements EEG signals. As shown in the paper, the number of the EEG components extracted using the short-term Rényi entropy is highly sensitive to the chosen TF threshold value, unlike the dominant IF which was shown to be highly robust to TF thresholding. Hence, characterization of the EEG signals using the short-term Rényi entropy should include both detecting the number of EEG components and the dominant component IF estimation.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于时频(TF)的脑电信号分析通常需要低能量交叉项和噪声抑制,然后才能估计局部分量数和主导分量瞬时频率(IF)。这可以很容易地通过在TF域中使用预设的TF阈值(通常是经验选择的)进行阈值处理来实现。研究了基于局部rsamnyi熵的方法对所选阈值的敏感性。这项研究是对现实生活中的左手和右手运动的脑电图信号进行的。如本文所示,使用短期rsamnyi熵提取的EEG分量的数量对所选择的TF阈值高度敏感,而不像主导IF对TF阈值具有高度鲁棒性。因此,利用短期r尼熵对脑电信号进行表征,既要检测脑电信号分量的数量,又要估计主分量的中频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TFD thresholding in estimating the number of EEG components and the dominant if using the short-term rényi entropy
Time-frequency (TF) based EEG signal analysis using the local or short-term Rényi entropy often requires low-energy cross-terms and noise suppression prior to the estimation of the local number of components and the dominant component instantaneous frequency (IF). This can be easily accomplished by thresholding in the TF domain with the preset TF threshold value, often chosen empirically. The paper investigates the sensitivity of the method based on the local Rényi entropy to the chosen threshold value. The study was performed on real-life left and right hand movements EEG signals. As shown in the paper, the number of the EEG components extracted using the short-term Rényi entropy is highly sensitive to the chosen TF threshold value, unlike the dominant IF which was shown to be highly robust to TF thresholding. Hence, characterization of the EEG signals using the short-term Rényi entropy should include both detecting the number of EEG components and the dominant component IF estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信