Alireza Salimy, I. Mitiche, P. Boreham, A. Nesbitt, G. Morison
{"title":"基于深度学习的物联网故障诊断系统能否同时识别多个故障?","authors":"Alireza Salimy, I. Mitiche, P. Boreham, A. Nesbitt, G. Morison","doi":"10.1109/IoTaIS56727.2022.9976013","DOIUrl":null,"url":null,"abstract":"The experiments in this study propose a fault diagnosis method to incorporate in an internet-of-things (IoT) system for the condition monitoring of high-voltage generating stations. The approach is based on feature extraction with signal processing methods and a deep learning model to tackle fault classification in measured signals that contain one or more faults simultaneously. The proposed system implements feature extraction through the short-time Fourier transform (STFT) of 1-D electro-magnetic interference (EMI) fault signals obtained from online high-voltage (HV) assets. The produced feature maps are then used in parallel with label word embeddings to train and test a deep learning model consisting of, a graph convolutional network (GCN), implemented to learn inter-dependant fault label relationships from label co-occurrence matrices and label word embeddings, and a convolutional neural network (CNN) to extract relevant features from STFT data representations. The proposed system tackles the under-addressed EMI multi-label HV fault diagnosis problem and produces strong results in label classification even when implemented on a heavily imbalanced data set, to the author’s knowledge the system provides an unprecedented level of performance that is industrially acceptable in fault diagnosis and can be successfully implemented on a real-world IoT-based condition monitoring system. In addition, in theory the proposed system is scalable for the prediction of a higher quantity of fault labels present in data instances.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can a deep learning based IoT fault diagnosis system identify more than one fault at a time?\",\"authors\":\"Alireza Salimy, I. Mitiche, P. Boreham, A. Nesbitt, G. Morison\",\"doi\":\"10.1109/IoTaIS56727.2022.9976013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experiments in this study propose a fault diagnosis method to incorporate in an internet-of-things (IoT) system for the condition monitoring of high-voltage generating stations. The approach is based on feature extraction with signal processing methods and a deep learning model to tackle fault classification in measured signals that contain one or more faults simultaneously. The proposed system implements feature extraction through the short-time Fourier transform (STFT) of 1-D electro-magnetic interference (EMI) fault signals obtained from online high-voltage (HV) assets. The produced feature maps are then used in parallel with label word embeddings to train and test a deep learning model consisting of, a graph convolutional network (GCN), implemented to learn inter-dependant fault label relationships from label co-occurrence matrices and label word embeddings, and a convolutional neural network (CNN) to extract relevant features from STFT data representations. The proposed system tackles the under-addressed EMI multi-label HV fault diagnosis problem and produces strong results in label classification even when implemented on a heavily imbalanced data set, to the author’s knowledge the system provides an unprecedented level of performance that is industrially acceptable in fault diagnosis and can be successfully implemented on a real-world IoT-based condition monitoring system. In addition, in theory the proposed system is scalable for the prediction of a higher quantity of fault labels present in data instances.\",\"PeriodicalId\":138894,\"journal\":{\"name\":\"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IoTaIS56727.2022.9976013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9976013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Can a deep learning based IoT fault diagnosis system identify more than one fault at a time?
The experiments in this study propose a fault diagnosis method to incorporate in an internet-of-things (IoT) system for the condition monitoring of high-voltage generating stations. The approach is based on feature extraction with signal processing methods and a deep learning model to tackle fault classification in measured signals that contain one or more faults simultaneously. The proposed system implements feature extraction through the short-time Fourier transform (STFT) of 1-D electro-magnetic interference (EMI) fault signals obtained from online high-voltage (HV) assets. The produced feature maps are then used in parallel with label word embeddings to train and test a deep learning model consisting of, a graph convolutional network (GCN), implemented to learn inter-dependant fault label relationships from label co-occurrence matrices and label word embeddings, and a convolutional neural network (CNN) to extract relevant features from STFT data representations. The proposed system tackles the under-addressed EMI multi-label HV fault diagnosis problem and produces strong results in label classification even when implemented on a heavily imbalanced data set, to the author’s knowledge the system provides an unprecedented level of performance that is industrially acceptable in fault diagnosis and can be successfully implemented on a real-world IoT-based condition monitoring system. In addition, in theory the proposed system is scalable for the prediction of a higher quantity of fault labels present in data instances.