具有句子级丢失的汽车设置中的音频字幕

Xuenan Xu, Heinrich Dinkel, Mengyue Wu, Kai Yu
{"title":"具有句子级丢失的汽车设置中的音频字幕","authors":"Xuenan Xu, Heinrich Dinkel, Mengyue Wu, Kai Yu","doi":"10.1109/ISCSLP49672.2021.9362117","DOIUrl":null,"url":null,"abstract":"Captioning has attracted much attention in image and video understanding while a small amount of work examines audio captioning. This paper contributes a Mandarin-annotated dataset for audio captioning within a car scene. A sentence-level loss is proposed to be used in tandem with a GRU encoder-decoder model to generate captions with higher semantic similarity to human annotations. We evaluate the model on the newly-proposed Car dataset, a previously published Mandarin Hospital dataset and the Joint dataset, indicating its generalization capability across different scenes. An improvement in all metrics can be observed, including classical natural language generation (NLG) metrics, sentence richness and human evaluation ratings. However, though detailed audio captions can now be automatically generated, human annotations still outperform model captions on many aspects.","PeriodicalId":279828,"journal":{"name":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Audio Caption in a Car Setting with a Sentence-Level Loss\",\"authors\":\"Xuenan Xu, Heinrich Dinkel, Mengyue Wu, Kai Yu\",\"doi\":\"10.1109/ISCSLP49672.2021.9362117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Captioning has attracted much attention in image and video understanding while a small amount of work examines audio captioning. This paper contributes a Mandarin-annotated dataset for audio captioning within a car scene. A sentence-level loss is proposed to be used in tandem with a GRU encoder-decoder model to generate captions with higher semantic similarity to human annotations. We evaluate the model on the newly-proposed Car dataset, a previously published Mandarin Hospital dataset and the Joint dataset, indicating its generalization capability across different scenes. An improvement in all metrics can be observed, including classical natural language generation (NLG) metrics, sentence richness and human evaluation ratings. However, though detailed audio captions can now be automatically generated, human annotations still outperform model captions on many aspects.\",\"PeriodicalId\":279828,\"journal\":{\"name\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP49672.2021.9362117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP49672.2021.9362117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

字幕在图像和视频理解中引起了很大的关注,而对音频字幕的研究却很少。本文为汽车场景中的音频字幕提供了一个中文注释数据集。提出了一种句子级损失与GRU编码器-解码器模型相结合的方法,以生成与人类注释具有更高语义相似性的标题。我们在新提出的汽车数据集、先前发布的普通话医院数据集和联合数据集上评估了该模型,表明其在不同场景下的泛化能力。可以观察到所有指标的改进,包括经典自然语言生成(NLG)指标,句子丰富度和人类评价评级。然而,尽管详细的音频字幕现在可以自动生成,但人工注释在许多方面仍然优于模型字幕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio Caption in a Car Setting with a Sentence-Level Loss
Captioning has attracted much attention in image and video understanding while a small amount of work examines audio captioning. This paper contributes a Mandarin-annotated dataset for audio captioning within a car scene. A sentence-level loss is proposed to be used in tandem with a GRU encoder-decoder model to generate captions with higher semantic similarity to human annotations. We evaluate the model on the newly-proposed Car dataset, a previously published Mandarin Hospital dataset and the Joint dataset, indicating its generalization capability across different scenes. An improvement in all metrics can be observed, including classical natural language generation (NLG) metrics, sentence richness and human evaluation ratings. However, though detailed audio captions can now be automatically generated, human annotations still outperform model captions on many aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信