一种用于模糊规则分类系统的Copula函数α参数的整定方法

Giancarlo Lucca, G. Dimuro, B. Bedregal, J. Sanz, H. Bustince
{"title":"一种用于模糊规则分类系统的Copula函数α参数的整定方法","authors":"Giancarlo Lucca, G. Dimuro, B. Bedregal, J. Sanz, H. Bustince","doi":"10.1109/BRACIS.2016.073","DOIUrl":null,"url":null,"abstract":"In this paper, we use the concept of extended Choquet integral generalized by a copula function, as proposed by Lucca et al. More precisely, the copula considered in their study uses a variable alpha , with different fixed values for testing its behavior. In this contribution we propose a modification of this method assigning a value to this alpha parameter using a genetic algorithm in order to find the value that best fits it for each class. Specifically, this new proposal is applied in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCSs). Finally, we compare the results provided by our new approach against the best solution proposed by Lucca et al. (that uses an fixed value for the variable alpha ). From the obtained results it can be concluded that the genetic learning of the alpha parameter is statistically superior than the fixed one. Therefore, we demonstrate that our genetic method can be used as an alternative for this function.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Proposal for Tuning the Alpha Parameter in a Copula Function Applied in Fuzzy Rule-Based Classification Systems\",\"authors\":\"Giancarlo Lucca, G. Dimuro, B. Bedregal, J. Sanz, H. Bustince\",\"doi\":\"10.1109/BRACIS.2016.073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the concept of extended Choquet integral generalized by a copula function, as proposed by Lucca et al. More precisely, the copula considered in their study uses a variable alpha , with different fixed values for testing its behavior. In this contribution we propose a modification of this method assigning a value to this alpha parameter using a genetic algorithm in order to find the value that best fits it for each class. Specifically, this new proposal is applied in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCSs). Finally, we compare the results provided by our new approach against the best solution proposed by Lucca et al. (that uses an fixed value for the variable alpha ). From the obtained results it can be concluded that the genetic learning of the alpha parameter is statistically superior than the fixed one. Therefore, we demonstrate that our genetic method can be used as an alternative for this function.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文采用Lucca等人提出的由联结函数推广的扩展Choquet积分的概念。更准确地说,在他们的研究中考虑的联结使用一个变量alpha,用不同的固定值来测试它的行为。在本文中,我们提出了对该方法的修改,使用遗传算法为alpha参数赋值,以便找到最适合每个类的值。具体来说,该方法应用于模糊规则分类系统(FRBCSs)的模糊推理方法。最后,我们将新方法提供的结果与Lucca等人提出的最佳解决方案(对变量alpha使用固定值)进行比较。从得到的结果可以得出结论,遗传学习的α参数在统计上优于固定参数。因此,我们证明了我们的遗传方法可以作为该函数的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proposal for Tuning the Alpha Parameter in a Copula Function Applied in Fuzzy Rule-Based Classification Systems
In this paper, we use the concept of extended Choquet integral generalized by a copula function, as proposed by Lucca et al. More precisely, the copula considered in their study uses a variable alpha , with different fixed values for testing its behavior. In this contribution we propose a modification of this method assigning a value to this alpha parameter using a genetic algorithm in order to find the value that best fits it for each class. Specifically, this new proposal is applied in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCSs). Finally, we compare the results provided by our new approach against the best solution proposed by Lucca et al. (that uses an fixed value for the variable alpha ). From the obtained results it can be concluded that the genetic learning of the alpha parameter is statistically superior than the fixed one. Therefore, we demonstrate that our genetic method can be used as an alternative for this function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信