{"title":"利用多绕组耦合电感的交错高升压DC-DC变换器系列","authors":"H. Gohari, Hadi Tarzamni, M. Sabahi","doi":"10.1109/PEDSTC53976.2022.9767379","DOIUrl":null,"url":null,"abstract":"This paper proposes a family of interleaved DC-DC converters for high step-up applications based on multi-winding coupled inductors, which utilize inductive and capacitive approaches to transfer the input energy to the output load. The wide output load voltage level of the proposed converter depends on the switches duty cycle and the coupled inductor (CI) turns ratio. As some features, interleaving and cascading help the converters achieve high output voltage gain, low input current ripple, low-volume input inductor, and high reliability. Moreover, employing multi-winding coupled inductors improves output voltage gain, recycles the magnetic components stored energy, cancels circulating current, decreases switch voltage spikes, and reduces switch voltage stress. In this paper, operation analysis in steady-state mode, power loss evaluation, comparison study, and design considerations are presented to evaluate the capabilities. Finally, simulation test results are provided to verify theoretical analysis.","PeriodicalId":213924,"journal":{"name":"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Family of Interleaved High Step-up DC-DC Converters Utilizing Multi-Winding Coupled Inductors\",\"authors\":\"H. Gohari, Hadi Tarzamni, M. Sabahi\",\"doi\":\"10.1109/PEDSTC53976.2022.9767379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a family of interleaved DC-DC converters for high step-up applications based on multi-winding coupled inductors, which utilize inductive and capacitive approaches to transfer the input energy to the output load. The wide output load voltage level of the proposed converter depends on the switches duty cycle and the coupled inductor (CI) turns ratio. As some features, interleaving and cascading help the converters achieve high output voltage gain, low input current ripple, low-volume input inductor, and high reliability. Moreover, employing multi-winding coupled inductors improves output voltage gain, recycles the magnetic components stored energy, cancels circulating current, decreases switch voltage spikes, and reduces switch voltage stress. In this paper, operation analysis in steady-state mode, power loss evaluation, comparison study, and design considerations are presented to evaluate the capabilities. Finally, simulation test results are provided to verify theoretical analysis.\",\"PeriodicalId\":213924,\"journal\":{\"name\":\"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDSTC53976.2022.9767379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC53976.2022.9767379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Family of Interleaved High Step-up DC-DC Converters Utilizing Multi-Winding Coupled Inductors
This paper proposes a family of interleaved DC-DC converters for high step-up applications based on multi-winding coupled inductors, which utilize inductive and capacitive approaches to transfer the input energy to the output load. The wide output load voltage level of the proposed converter depends on the switches duty cycle and the coupled inductor (CI) turns ratio. As some features, interleaving and cascading help the converters achieve high output voltage gain, low input current ripple, low-volume input inductor, and high reliability. Moreover, employing multi-winding coupled inductors improves output voltage gain, recycles the magnetic components stored energy, cancels circulating current, decreases switch voltage spikes, and reduces switch voltage stress. In this paper, operation analysis in steady-state mode, power loss evaluation, comparison study, and design considerations are presented to evaluate the capabilities. Finally, simulation test results are provided to verify theoretical analysis.