中国第一产业研究:基于支持向量机和莫兰指数的区域分析证据

Shiyu Jiang, Junjie Jia, Yi Yuan, Yuxiong Wu, Tianqi Wang
{"title":"中国第一产业研究:基于支持向量机和莫兰指数的区域分析证据","authors":"Shiyu Jiang, Junjie Jia, Yi Yuan, Yuxiong Wu, Tianqi Wang","doi":"10.1109/CCIS53392.2021.9754653","DOIUrl":null,"url":null,"abstract":"With advanced technology and efficient policy management in China’s primary industry, productivity has increased significantly. This article aims to use machine learning and Moran’s I to analyze the current situation of China’s primary industry from a regional perspective. Principal component analysis and Lagrange polynomial interpolation are used for data pre-processing. Classification result from the support vector machine reveals that there exist boundaries between each region based on the features of the primary industry. Our results show that fishery and forestry show positive spatial correlations in the Moran’s I scatter diagram, while animal husbandry and farming show negative spatial correlations, and regional agriculture development can improve China’s primary industry in the long run.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on China’s Primary Industry: Evidence From Regional Analysis Based on SVM and Moran’s Index\",\"authors\":\"Shiyu Jiang, Junjie Jia, Yi Yuan, Yuxiong Wu, Tianqi Wang\",\"doi\":\"10.1109/CCIS53392.2021.9754653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With advanced technology and efficient policy management in China’s primary industry, productivity has increased significantly. This article aims to use machine learning and Moran’s I to analyze the current situation of China’s primary industry from a regional perspective. Principal component analysis and Lagrange polynomial interpolation are used for data pre-processing. Classification result from the support vector machine reveals that there exist boundaries between each region based on the features of the primary industry. Our results show that fishery and forestry show positive spatial correlations in the Moran’s I scatter diagram, while animal husbandry and farming show negative spatial correlations, and regional agriculture development can improve China’s primary industry in the long run.\",\"PeriodicalId\":191226,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS53392.2021.9754653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

凭借先进的技术和高效的政策管理,中国第一产业的生产率显著提高。本文旨在利用机器学习和Moran’s I从区域角度分析中国第一产业的现状。采用主成分分析和拉格朗日多项式插值对数据进行预处理。支持向量机的分类结果表明,基于第一产业的特征,各区域之间存在边界。研究结果表明,在Moran’s I散点图中,渔业与林业表现为正相关,畜牧业与农业表现为负相关,从长期来看,区域农业发展对中国第一产业具有提升作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on China’s Primary Industry: Evidence From Regional Analysis Based on SVM and Moran’s Index
With advanced technology and efficient policy management in China’s primary industry, productivity has increased significantly. This article aims to use machine learning and Moran’s I to analyze the current situation of China’s primary industry from a regional perspective. Principal component analysis and Lagrange polynomial interpolation are used for data pre-processing. Classification result from the support vector machine reveals that there exist boundaries between each region based on the features of the primary industry. Our results show that fishery and forestry show positive spatial correlations in the Moran’s I scatter diagram, while animal husbandry and farming show negative spatial correlations, and regional agriculture development can improve China’s primary industry in the long run.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信