时变吹风压力下单簧管冲击瞬态的分析测定

André Almeida, B. Bergeot, C. Vergez, B. Gazengel
{"title":"时变吹风压力下单簧管冲击瞬态的分析测定","authors":"André Almeida, B. Bergeot, C. Vergez, B. Gazengel","doi":"10.3813/AAA.918897","DOIUrl":null,"url":null,"abstract":"This article uses a basic model of a reed instrument , known as the lossless Raman model, to determine analytically the envelope of the sound produced by the clarinet when the mouth pressure is increased gradually to start a note from silence. Using results from dynamic bifur-cation theory, a prediction of the amplitude of the sound as a function of time is given based on a few parameters quantifying the time evolution of mouth pressure. As in previous uses of this model, the predictions are expected to be qualitatively consistent with simulations using the Raman model, and observations of real instruments. Model simulations for slowly variable parameters require very high precisions of computation. Similarly, any real system, even if close to the model would be affected by noise. In order to describe the influence of noise, a modified model is developed that includes a stochastic variation of the parameters. Both ideal and stochastic models are shown to attain a minimal amplitude at the static oscillation threshold. Beyond this point, the amplitude of the oscillations increases exponentially, although some time is required before the oscillations can be observed at the '' dynamic oscillation threshold ''. The effect of a sudden interruption of the growth of the mouth pressure is also studied, showing that it usually triggers a faster growth of the oscillations.","PeriodicalId":331413,"journal":{"name":"arXiv: Classical Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analytical determination of the attack transient in a clarinet with time-varying blowing pressure\",\"authors\":\"André Almeida, B. Bergeot, C. Vergez, B. Gazengel\",\"doi\":\"10.3813/AAA.918897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article uses a basic model of a reed instrument , known as the lossless Raman model, to determine analytically the envelope of the sound produced by the clarinet when the mouth pressure is increased gradually to start a note from silence. Using results from dynamic bifur-cation theory, a prediction of the amplitude of the sound as a function of time is given based on a few parameters quantifying the time evolution of mouth pressure. As in previous uses of this model, the predictions are expected to be qualitatively consistent with simulations using the Raman model, and observations of real instruments. Model simulations for slowly variable parameters require very high precisions of computation. Similarly, any real system, even if close to the model would be affected by noise. In order to describe the influence of noise, a modified model is developed that includes a stochastic variation of the parameters. Both ideal and stochastic models are shown to attain a minimal amplitude at the static oscillation threshold. Beyond this point, the amplitude of the oscillations increases exponentially, although some time is required before the oscillations can be observed at the '' dynamic oscillation threshold ''. The effect of a sudden interruption of the growth of the mouth pressure is also studied, showing that it usually triggers a faster growth of the oscillations.\",\"PeriodicalId\":331413,\"journal\":{\"name\":\"arXiv: Classical Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3813/AAA.918897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/AAA.918897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文使用簧片乐器的一个基本模型,即无损拉曼模型,分析确定单簧管在口压逐渐增加以从沉默开始一个音符时所产生的声音包络。利用动态分岔理论的结果,根据口压随时间变化的几个参数,给出了声幅随时间变化的预测。正如先前使用该模型一样,预计预测结果将与使用拉曼模型的模拟和实际仪器的观测结果在质量上保持一致。对于慢变参数的模型仿真要求非常高的计算精度。同样,任何真实的系统,即使接近模型也会受到噪声的影响。为了描述噪声的影响,建立了一个包含参数随机变化的修正模型。理想模型和随机模型均显示在静态振荡阈值处获得最小振幅。在此之后,振荡幅度呈指数增长,尽管在“动态振荡阈值”处观察到振荡需要一段时间。本文还研究了口压增长突然中断的影响,表明它通常会引发振荡的更快增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical determination of the attack transient in a clarinet with time-varying blowing pressure
This article uses a basic model of a reed instrument , known as the lossless Raman model, to determine analytically the envelope of the sound produced by the clarinet when the mouth pressure is increased gradually to start a note from silence. Using results from dynamic bifur-cation theory, a prediction of the amplitude of the sound as a function of time is given based on a few parameters quantifying the time evolution of mouth pressure. As in previous uses of this model, the predictions are expected to be qualitatively consistent with simulations using the Raman model, and observations of real instruments. Model simulations for slowly variable parameters require very high precisions of computation. Similarly, any real system, even if close to the model would be affected by noise. In order to describe the influence of noise, a modified model is developed that includes a stochastic variation of the parameters. Both ideal and stochastic models are shown to attain a minimal amplitude at the static oscillation threshold. Beyond this point, the amplitude of the oscillations increases exponentially, although some time is required before the oscillations can be observed at the '' dynamic oscillation threshold ''. The effect of a sudden interruption of the growth of the mouth pressure is also studied, showing that it usually triggers a faster growth of the oscillations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信