印尼最高派息公司股票回报波动性分析

Ariesta Tika Kinanti Pangestu Putri, Hilary Flora Agustina Tulli Lasar, Regi Muzio Ponziani
{"title":"印尼最高派息公司股票回报波动性分析","authors":"Ariesta Tika Kinanti Pangestu Putri, Hilary Flora Agustina Tulli Lasar, Regi Muzio Ponziani","doi":"10.24912/jmieb.v7i1.23150","DOIUrl":null,"url":null,"abstract":"Penelitian ini bertujuan untuk memodelkan volatilitas return indeks saham perusahaan dividen tertinggi di Indonesia (DIV 20) sebelum dan sesudah pandemi COVID 19. Model keluarga ARCH (Autoregressive Conditional Heteroscedasticity) digunakan dalam hal ini. Periode penelitian diperpanjang dari 18 Mei 2018 hingga 18 Februari 2022. Batas waktu dimulainya pandemi adalah 1 April 2020. Data pengembalian adalah pengembalian mingguan. Hasilnya menunjukkan bahwa sebelum pandemi, GJR-GARCH(1,1) dapat memetakan dan melacak volatilitas dengan sangat baik karena mencetak AIC dan SIC pra-pandemi terendah. Oleh karena itu, penelitian ini menguatkan bukti adanya reaksi asimetris dari partisipasi pasar terhadap kemunculan dan penyebaran berita baik dan buruk di pasar. Setelah pandemi, efek ARCH menjadi kurang jelas. Angka signifikansi menurun meskipun efek ARCH masih signifikan pada 0,15. Performa model ARCH(1) secara signifikan lebih tinggi daripada model lain pasca-pandemi. Hasil tersebut menjadi bukti bahwa pascapandemi ketidakpastian yang dihadapi pelaku pasar sangat tinggi. Hal ini mengakibatkan meningkatnya volatilitas. Model keluarga ARCH menjadi kurang signifikan karena pengembaliannya lebih acak. Analisis lebih lanjut, bagaimanapun, menunjukkan bahwa pengembalian belum mengikuti model random walk meskipun keacakan meningkat. Oleh karena itu, ARCH(1) masih sesuai untuk memodelkan volatilitas setelah Pandemi.\n \nThis research aims at modeling the volatility of Indonesian highest paying dividend companies stock index (DIV 20) returns before and after pandemic COVID 19. The ARCH (Autoregressive Conditional Heteroscedasticity) family models were employed in this regard. The research period extended from 18 May 2018 to 18 February 2022. The cutoff for the commencement of pandemic was 1st April 2020. The return data were weekly returns. The results suggested that before pandemic, GJR-GARCH(1,1) could map and trace the volatility very well since it scored the lowest AIC and SIC pre-pandemic. Therefore, this research corroborated the evidence that there existed asymmetric reaction from the market participation toward the emergence and spread of good and bad news in the market. After pandemic, the ARCH effect became less obvious. The significance number was decreasing although the ARCH effect was still significant at 0.15. ARCH(1) model performance was significantly higher than the other models post-pandemic. The result presented evidence that after pandemic the uncertainty facing the market participants was very high. This resulted in the increase of the volatility. The ARCH family model was becoming less significant because the returns were more random. Further analysis, however, showed that the returns did not yet follow the random walk model despite the increasing randomness. Therefore, ARCH(1) was still appropriate to model the volatility after Pandemic.","PeriodicalId":102855,"journal":{"name":"Jurnal Muara Ilmu Ekonomi dan Bisnis","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE ANALYSIS OF HIGHEST PAYING DIVIDEND COMPANIES STOCK RETURNS VOLATILITY IN INDONESIA\",\"authors\":\"Ariesta Tika Kinanti Pangestu Putri, Hilary Flora Agustina Tulli Lasar, Regi Muzio Ponziani\",\"doi\":\"10.24912/jmieb.v7i1.23150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penelitian ini bertujuan untuk memodelkan volatilitas return indeks saham perusahaan dividen tertinggi di Indonesia (DIV 20) sebelum dan sesudah pandemi COVID 19. Model keluarga ARCH (Autoregressive Conditional Heteroscedasticity) digunakan dalam hal ini. Periode penelitian diperpanjang dari 18 Mei 2018 hingga 18 Februari 2022. Batas waktu dimulainya pandemi adalah 1 April 2020. Data pengembalian adalah pengembalian mingguan. Hasilnya menunjukkan bahwa sebelum pandemi, GJR-GARCH(1,1) dapat memetakan dan melacak volatilitas dengan sangat baik karena mencetak AIC dan SIC pra-pandemi terendah. Oleh karena itu, penelitian ini menguatkan bukti adanya reaksi asimetris dari partisipasi pasar terhadap kemunculan dan penyebaran berita baik dan buruk di pasar. Setelah pandemi, efek ARCH menjadi kurang jelas. Angka signifikansi menurun meskipun efek ARCH masih signifikan pada 0,15. Performa model ARCH(1) secara signifikan lebih tinggi daripada model lain pasca-pandemi. Hasil tersebut menjadi bukti bahwa pascapandemi ketidakpastian yang dihadapi pelaku pasar sangat tinggi. Hal ini mengakibatkan meningkatnya volatilitas. Model keluarga ARCH menjadi kurang signifikan karena pengembaliannya lebih acak. Analisis lebih lanjut, bagaimanapun, menunjukkan bahwa pengembalian belum mengikuti model random walk meskipun keacakan meningkat. Oleh karena itu, ARCH(1) masih sesuai untuk memodelkan volatilitas setelah Pandemi.\\n \\nThis research aims at modeling the volatility of Indonesian highest paying dividend companies stock index (DIV 20) returns before and after pandemic COVID 19. The ARCH (Autoregressive Conditional Heteroscedasticity) family models were employed in this regard. The research period extended from 18 May 2018 to 18 February 2022. The cutoff for the commencement of pandemic was 1st April 2020. The return data were weekly returns. The results suggested that before pandemic, GJR-GARCH(1,1) could map and trace the volatility very well since it scored the lowest AIC and SIC pre-pandemic. Therefore, this research corroborated the evidence that there existed asymmetric reaction from the market participation toward the emergence and spread of good and bad news in the market. After pandemic, the ARCH effect became less obvious. The significance number was decreasing although the ARCH effect was still significant at 0.15. ARCH(1) model performance was significantly higher than the other models post-pandemic. The result presented evidence that after pandemic the uncertainty facing the market participants was very high. This resulted in the increase of the volatility. The ARCH family model was becoming less significant because the returns were more random. Further analysis, however, showed that the returns did not yet follow the random walk model despite the increasing randomness. Therefore, ARCH(1) was still appropriate to model the volatility after Pandemic.\",\"PeriodicalId\":102855,\"journal\":{\"name\":\"Jurnal Muara Ilmu Ekonomi dan Bisnis\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Muara Ilmu Ekonomi dan Bisnis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24912/jmieb.v7i1.23150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Muara Ilmu Ekonomi dan Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24912/jmieb.v7i1.23150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在模拟COVID大流行前后印尼最高股利公司收益指数(DIV 20)回归的波动。阿奇家族模型(Autoregressive hetercedasticity)在这方面使用。这项研究的时间从2018年5月18日延长到2022年2月18日。大流行的截止日期是2020年4月1日。退货单是每周的退货单。结果表明,在大流行之前,GJR-GARCH(1.1)能够很好地绘制和跟踪波动,因为它印刷了AIC和在大流行前的SIC。因此,这项研究加强了市场参与和在市场上传播好消息和坏消息的非对称反应的证据。大流行之后,阿奇的影响变得不那么明显了。数字显著下降,尽管拱门在0.15的影响仍然很重要。大流行后的其他模型的拱门表现(1)明显高于其他模型。这一结果证明,市场参与者面临的不确定性之后的决定是巨大的。它会导致波动增加。由于反腐败更随机,阿奇的家庭模式变得不那么重要了。然而,进一步的分析表明,尽管“随机步行”模式有所增加,但回报尚未遵循。因此,拱门(1)仍适合在大流行后模拟波动。这项研究模拟了印尼highest payd股股股票指数(DIV 20)前和之后的pandemic COVID 19。阿奇(Autoregressive adstacity)的家庭模型被介绍给这个regard。这项研究从2018年5月18日延长到2022年2月18日。天气预报的截止日期是2020年4月1日。数据回报率每周恢复。建议在大流行之前,GJR-GARCH(1.1)可以计算出非常好的波动,因为它检测了lowest AIC和SIC pandemic。因此,这项研究收集了证据,证明市场上存在着敌意反应,向市场中存在着尊重和传播好消息的证据。大流行之后,罪魁祸首就消失了。石柱编号虽然拱门效应在零点十五分仍然有效拱门(1)表现模型比流行后的任何模型都要高。有证据表明,在大流行之后,市场上的政党地位非常高。这是可预测的波动。拱门的家庭模型变得无关紧要,因为恢复是更加随机的。进一步的分析,悬河分析表明,回来的人还没有遵循兰多走路模式的特点特点的特点。因此,阿奇(1)仍然倾向于模型大萧条后的波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE ANALYSIS OF HIGHEST PAYING DIVIDEND COMPANIES STOCK RETURNS VOLATILITY IN INDONESIA
Penelitian ini bertujuan untuk memodelkan volatilitas return indeks saham perusahaan dividen tertinggi di Indonesia (DIV 20) sebelum dan sesudah pandemi COVID 19. Model keluarga ARCH (Autoregressive Conditional Heteroscedasticity) digunakan dalam hal ini. Periode penelitian diperpanjang dari 18 Mei 2018 hingga 18 Februari 2022. Batas waktu dimulainya pandemi adalah 1 April 2020. Data pengembalian adalah pengembalian mingguan. Hasilnya menunjukkan bahwa sebelum pandemi, GJR-GARCH(1,1) dapat memetakan dan melacak volatilitas dengan sangat baik karena mencetak AIC dan SIC pra-pandemi terendah. Oleh karena itu, penelitian ini menguatkan bukti adanya reaksi asimetris dari partisipasi pasar terhadap kemunculan dan penyebaran berita baik dan buruk di pasar. Setelah pandemi, efek ARCH menjadi kurang jelas. Angka signifikansi menurun meskipun efek ARCH masih signifikan pada 0,15. Performa model ARCH(1) secara signifikan lebih tinggi daripada model lain pasca-pandemi. Hasil tersebut menjadi bukti bahwa pascapandemi ketidakpastian yang dihadapi pelaku pasar sangat tinggi. Hal ini mengakibatkan meningkatnya volatilitas. Model keluarga ARCH menjadi kurang signifikan karena pengembaliannya lebih acak. Analisis lebih lanjut, bagaimanapun, menunjukkan bahwa pengembalian belum mengikuti model random walk meskipun keacakan meningkat. Oleh karena itu, ARCH(1) masih sesuai untuk memodelkan volatilitas setelah Pandemi.   This research aims at modeling the volatility of Indonesian highest paying dividend companies stock index (DIV 20) returns before and after pandemic COVID 19. The ARCH (Autoregressive Conditional Heteroscedasticity) family models were employed in this regard. The research period extended from 18 May 2018 to 18 February 2022. The cutoff for the commencement of pandemic was 1st April 2020. The return data were weekly returns. The results suggested that before pandemic, GJR-GARCH(1,1) could map and trace the volatility very well since it scored the lowest AIC and SIC pre-pandemic. Therefore, this research corroborated the evidence that there existed asymmetric reaction from the market participation toward the emergence and spread of good and bad news in the market. After pandemic, the ARCH effect became less obvious. The significance number was decreasing although the ARCH effect was still significant at 0.15. ARCH(1) model performance was significantly higher than the other models post-pandemic. The result presented evidence that after pandemic the uncertainty facing the market participants was very high. This resulted in the increase of the volatility. The ARCH family model was becoming less significant because the returns were more random. Further analysis, however, showed that the returns did not yet follow the random walk model despite the increasing randomness. Therefore, ARCH(1) was still appropriate to model the volatility after Pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信