基于级联Hammerstein神经网络的风电机组频率控制模型预测控制

N. Kayedpour, Arash E. Samani, J. D. De Kooning, L. Vandevelde, G. Crevecoeur
{"title":"基于级联Hammerstein神经网络的风电机组频率控制模型预测控制","authors":"N. Kayedpour, Arash E. Samani, J. D. De Kooning, L. Vandevelde, G. Crevecoeur","doi":"10.1109/PESGM48719.2022.9916984","DOIUrl":null,"url":null,"abstract":"This article presents an application of neural network-based Model Predictive Control (MPC) to improve the wind turbine control system's performance in providing frequency control ancillary services to the grid. A closed-loop Hammerstein structure is used to approximate the behavior of a 5MW floating offshore wind turbine with a Permanent Magnet Synchronous Generator (PMSG). The multilayer perceptron neural networks estimate the aerodynamic behavior of the nonlinear steady-state part, and the linear AutoRegressive with Exogenous input (ARX) is applied to identify the linear time-invariant dynamic part. Using the specific structure of the Cascade Hammerstein design simplifies the online linearization at each operating point. The proposed algorithm evades the necessity of nonlinear optimization and uses quadratic programming to obtain control actions. Eventually, the proposed control design provides a fast and stable response to the grid frequency variations with optimal pitch and torque cooperation. The performance of the MPC is compared with the gain-scheduled proportional-integral (PI) controller. Results demonstrate the effectiveness of the designed control system in providing Frequency Containment Reserve (FCR) and frequency regulation in the future of power systems.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model Predictive Control with a Cascaded Hammerstein Neural Network of a Wind Turbine Providing Frequency Containment Reserve\",\"authors\":\"N. Kayedpour, Arash E. Samani, J. D. De Kooning, L. Vandevelde, G. Crevecoeur\",\"doi\":\"10.1109/PESGM48719.2022.9916984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an application of neural network-based Model Predictive Control (MPC) to improve the wind turbine control system's performance in providing frequency control ancillary services to the grid. A closed-loop Hammerstein structure is used to approximate the behavior of a 5MW floating offshore wind turbine with a Permanent Magnet Synchronous Generator (PMSG). The multilayer perceptron neural networks estimate the aerodynamic behavior of the nonlinear steady-state part, and the linear AutoRegressive with Exogenous input (ARX) is applied to identify the linear time-invariant dynamic part. Using the specific structure of the Cascade Hammerstein design simplifies the online linearization at each operating point. The proposed algorithm evades the necessity of nonlinear optimization and uses quadratic programming to obtain control actions. Eventually, the proposed control design provides a fast and stable response to the grid frequency variations with optimal pitch and torque cooperation. The performance of the MPC is compared with the gain-scheduled proportional-integral (PI) controller. Results demonstrate the effectiveness of the designed control system in providing Frequency Containment Reserve (FCR) and frequency regulation in the future of power systems.\",\"PeriodicalId\":388672,\"journal\":{\"name\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM48719.2022.9916984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于神经网络的模型预测控制(MPC)方法,用于提高风力发电机组控制系统的性能,为电网提供频率控制辅助服务。采用闭环Hammerstein结构对5MW浮式海上风电机组永磁同步发电机(PMSG)的性能进行了近似分析。多层感知器神经网络对非线性稳态部分的气动特性进行估计,采用带外源输入的线性自回归(ARX)方法对线性定常动态部分进行辨识。使用级联Hammerstein设计的特定结构简化了每个工作点的在线线性化。该算法避免了非线性优化的需要,采用二次规划方法获得控制动作。最终,所提出的控制设计能够在最佳的节距和转矩配合下对电网频率变化做出快速稳定的响应。比较了MPC与增益调度比例积分(PI)控制器的性能。结果表明,所设计的控制系统在未来电力系统的频率控制和频率控制方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Control with a Cascaded Hammerstein Neural Network of a Wind Turbine Providing Frequency Containment Reserve
This article presents an application of neural network-based Model Predictive Control (MPC) to improve the wind turbine control system's performance in providing frequency control ancillary services to the grid. A closed-loop Hammerstein structure is used to approximate the behavior of a 5MW floating offshore wind turbine with a Permanent Magnet Synchronous Generator (PMSG). The multilayer perceptron neural networks estimate the aerodynamic behavior of the nonlinear steady-state part, and the linear AutoRegressive with Exogenous input (ARX) is applied to identify the linear time-invariant dynamic part. Using the specific structure of the Cascade Hammerstein design simplifies the online linearization at each operating point. The proposed algorithm evades the necessity of nonlinear optimization and uses quadratic programming to obtain control actions. Eventually, the proposed control design provides a fast and stable response to the grid frequency variations with optimal pitch and torque cooperation. The performance of the MPC is compared with the gain-scheduled proportional-integral (PI) controller. Results demonstrate the effectiveness of the designed control system in providing Frequency Containment Reserve (FCR) and frequency regulation in the future of power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信