{"title":"基于最小最大遗憾和aco学习的单频网络绿色鲁棒优化设计","authors":"Fabio D’Andreagiovanni, Hicham Lakhlef, Antonella Nardin","doi":"10.1109/ISC255366.2022.9922401","DOIUrl":null,"url":null,"abstract":"Notwithstanding the introduction of brand new 5G-based wireless services, single frequency networks supporting digital television and radio broadcasting still represent a major source of telecommunications services in modern smart cities. In this work, we propose a robust optimization model for the green design of second generation single frequency networks based on the digital television DVB-T standard, whose ongoing adoption requires to reconfigure and redesign existing networks. Our robust model aims at protecting design solutions against the data uncertainty that naturally affect propagation of signals in a real environment. For reducing conservatism of solutions, we refer to a heuristic min-max regret paradigm and to solve the resulting problem we propose to adopt a hybrid exact-heuristic algorithm based on the combination of an Ant Colony Optimization-like learning procedure, exploiting tight formulations of the optimization model, with an exact large neighborhood search. Results of computational tests considering realistic instances show that the heuristic min-max regret approach can produce solutions characterized by a substantially lower price of robustness without sacrificing protection against data uncertainty.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green and robust optimal design of Single Frequency Networks by min-max regret and ACO-based learning\",\"authors\":\"Fabio D’Andreagiovanni, Hicham Lakhlef, Antonella Nardin\",\"doi\":\"10.1109/ISC255366.2022.9922401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Notwithstanding the introduction of brand new 5G-based wireless services, single frequency networks supporting digital television and radio broadcasting still represent a major source of telecommunications services in modern smart cities. In this work, we propose a robust optimization model for the green design of second generation single frequency networks based on the digital television DVB-T standard, whose ongoing adoption requires to reconfigure and redesign existing networks. Our robust model aims at protecting design solutions against the data uncertainty that naturally affect propagation of signals in a real environment. For reducing conservatism of solutions, we refer to a heuristic min-max regret paradigm and to solve the resulting problem we propose to adopt a hybrid exact-heuristic algorithm based on the combination of an Ant Colony Optimization-like learning procedure, exploiting tight formulations of the optimization model, with an exact large neighborhood search. Results of computational tests considering realistic instances show that the heuristic min-max regret approach can produce solutions characterized by a substantially lower price of robustness without sacrificing protection against data uncertainty.\",\"PeriodicalId\":277015,\"journal\":{\"name\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC255366.2022.9922401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9922401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green and robust optimal design of Single Frequency Networks by min-max regret and ACO-based learning
Notwithstanding the introduction of brand new 5G-based wireless services, single frequency networks supporting digital television and radio broadcasting still represent a major source of telecommunications services in modern smart cities. In this work, we propose a robust optimization model for the green design of second generation single frequency networks based on the digital television DVB-T standard, whose ongoing adoption requires to reconfigure and redesign existing networks. Our robust model aims at protecting design solutions against the data uncertainty that naturally affect propagation of signals in a real environment. For reducing conservatism of solutions, we refer to a heuristic min-max regret paradigm and to solve the resulting problem we propose to adopt a hybrid exact-heuristic algorithm based on the combination of an Ant Colony Optimization-like learning procedure, exploiting tight formulations of the optimization model, with an exact large neighborhood search. Results of computational tests considering realistic instances show that the heuristic min-max regret approach can produce solutions characterized by a substantially lower price of robustness without sacrificing protection against data uncertainty.