Maria Höffmann, J. Clemens, David Stronzek-Pfeifer, Ruggero Simonelli, Andreas Serov, Sven Schettino, Margareta Runge, K. Schill, C. Büskens
{"title":"自动割草机覆盖路径规划与精确定位","authors":"Maria Höffmann, J. Clemens, David Stronzek-Pfeifer, Ruggero Simonelli, Andreas Serov, Sven Schettino, Margareta Runge, K. Schill, C. Büskens","doi":"10.1109/IRC55401.2022.00046","DOIUrl":null,"url":null,"abstract":"In this paper, we present a concept for automatic path planning and high-precision localization for autonomous lawn mowers. In particular, two objectives contribute to the increased efficiency of the presented approach compared to classical automatic lawn mowing techniques. First, the standard chaotic control of the mower is replaced by an efficient planning strategy for traversing the area without gaps and with as few overlaps as possible. Second, the conventional boundary wires become unnecessary as high-precision localization based on multi-sensor fusion allows for keeping the virtual boundaries. The whole concept is implemented and tested on an industrial-grade lawn mower. The advantages of intelligent path planning over chaotic strategies are shown, and the localization performance is validated using real-world data.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coverage Path Planning and Precise Localization for Autonomous Lawn Mowers\",\"authors\":\"Maria Höffmann, J. Clemens, David Stronzek-Pfeifer, Ruggero Simonelli, Andreas Serov, Sven Schettino, Margareta Runge, K. Schill, C. Büskens\",\"doi\":\"10.1109/IRC55401.2022.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a concept for automatic path planning and high-precision localization for autonomous lawn mowers. In particular, two objectives contribute to the increased efficiency of the presented approach compared to classical automatic lawn mowing techniques. First, the standard chaotic control of the mower is replaced by an efficient planning strategy for traversing the area without gaps and with as few overlaps as possible. Second, the conventional boundary wires become unnecessary as high-precision localization based on multi-sensor fusion allows for keeping the virtual boundaries. The whole concept is implemented and tested on an industrial-grade lawn mower. The advantages of intelligent path planning over chaotic strategies are shown, and the localization performance is validated using real-world data.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coverage Path Planning and Precise Localization for Autonomous Lawn Mowers
In this paper, we present a concept for automatic path planning and high-precision localization for autonomous lawn mowers. In particular, two objectives contribute to the increased efficiency of the presented approach compared to classical automatic lawn mowing techniques. First, the standard chaotic control of the mower is replaced by an efficient planning strategy for traversing the area without gaps and with as few overlaps as possible. Second, the conventional boundary wires become unnecessary as high-precision localization based on multi-sensor fusion allows for keeping the virtual boundaries. The whole concept is implemented and tested on an industrial-grade lawn mower. The advantages of intelligent path planning over chaotic strategies are shown, and the localization performance is validated using real-world data.