基于特征描述符上流行的视觉词表示包的交通标志识别

K. Virupakshappa, Yan Han, E. Oruklu
{"title":"基于特征描述符上流行的视觉词表示包的交通标志识别","authors":"K. Virupakshappa, Yan Han, E. Oruklu","doi":"10.1109/EIT.2015.7293387","DOIUrl":null,"url":null,"abstract":"Driver Assistance Systems such as traffic sign detection and autonomous car research are largely facilitated with the recent advances on computer vision and pattern recognition. In this work, Bag of visual Words technique has been implemented on Speeded Up Robust Feature (SURF) descriptors of the traffic signs and later the sturdy classifier Support Vector Machine (SVM) is used to categorize the traffic signs to its respective groups. Experimental results demonstrate that the proposed method of implementation can reach an accuracy of 95.2%.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Traffic sign recognition based on prevailing bag of visual words representation on feature descriptors\",\"authors\":\"K. Virupakshappa, Yan Han, E. Oruklu\",\"doi\":\"10.1109/EIT.2015.7293387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driver Assistance Systems such as traffic sign detection and autonomous car research are largely facilitated with the recent advances on computer vision and pattern recognition. In this work, Bag of visual Words technique has been implemented on Speeded Up Robust Feature (SURF) descriptors of the traffic signs and later the sturdy classifier Support Vector Machine (SVM) is used to categorize the traffic signs to its respective groups. Experimental results demonstrate that the proposed method of implementation can reach an accuracy of 95.2%.\",\"PeriodicalId\":415614,\"journal\":{\"name\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2015.7293387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

驾驶辅助系统,如交通标志检测和自动驾驶汽车的研究很大程度上促进了计算机视觉和模式识别的最新进展。本文首先将视觉词袋技术应用于交通标志的加速鲁棒特征(SURF)描述符,然后利用鲁棒分类器支持向量机(SVM)对交通标志进行分类。实验结果表明,该方法的实现精度达到95.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic sign recognition based on prevailing bag of visual words representation on feature descriptors
Driver Assistance Systems such as traffic sign detection and autonomous car research are largely facilitated with the recent advances on computer vision and pattern recognition. In this work, Bag of visual Words technique has been implemented on Speeded Up Robust Feature (SURF) descriptors of the traffic signs and later the sturdy classifier Support Vector Machine (SVM) is used to categorize the traffic signs to its respective groups. Experimental results demonstrate that the proposed method of implementation can reach an accuracy of 95.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信